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In this paper, a new recursive implementation of composite adaptive control for robot manipulators is proposed. We investigate
the recursive composite adaptive algorithm and prove the stability directly based on the Newton-Euler equations in matrix form,
which, to our knowledge, is the first result on this point in the literature. The proposed algorithm has an amount of computation
OðnÞ, which is less than any existing similar algorithms and can satisfy the computation need of the complicated multidegree
manipulators. The manipulator of the Chinese Space Station is employed as a simulation example, and the results verify the
effectiveness of this proposed recursive algorithm.

1. Introduction

In the process of the construction and routine maintenance
of the Chinese Space Station, the manipulator of the Chinese
Space Station plays a significantly important role that can
accomplish some key tasks, such as transposition docking,
daily maintenance, and auxiliary extravehicular activities
[1, 2]. The high accuracy and dynamic performance of
the manipulator are the necessary conditions for the success-
ful completion of these tasks, which can often be maintained
by controls that are designed based on the dynamics model.
But in the practice situations, it is usually unrealistic to obtain
all the inertia parameters precisely. An adaptive control
scheme is one approach that can overcome this problem in
spite of large parameter uncertainties.

Adaptive control can ensure the convergence of tracking
control even if the system has uncertain or slowly changing
parameters. In general, this scheme can be divided into
two classes named the direct adaptation and the indirect
adaptation according to the signal that drives the parameter
update law. In the first category, the parameter update is
driven by the tracking errors. While in the second category,
the parameters are modified according to the prediction

errors, usually of the filtered joint torques. Adaptive control
based on tracking errors usually can guarantee a global
tracking convergence; however, the converge of estimated
parameters has more stringent conditions. In comparison,
the indirect adaptive control has a faster parameter conver-
gence speed, but it is generally difficult to obtain the stability
of the tracking errors. Combining the two methods, the well-
known composite adaptive controller has the advantages of
both, in which the parameter adaptation is driven by both
tracking errors and prediction errors [3, 4].

Some more recent results on adaptive manipulator con-
trol focus on dealing with the control of flexible robots [5, 6].
In some applications of coordinated manipulators, some
adaptive control methods are also attractive that behave with
perfect performance [7–10]. In order to achieve higher per-
formance, adaptive control schemes are usually combined
with other control methods, such as robust control methods
[11, 12], and neural networks [13, 14].

However, computational complexity of these adaptive
control methods is a main limitation in the practical robot
manipulators, particularly for the case with high degree of
freedom. It is straightforward for using Newton-Euler for-
mulation for the adaptive controller based on the computed
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torque method, while it seems hard to seek an efficient
approach for the adaptive controller based on the passivity
theory, mainly for the emergency of the reference velocity
in the Coriolis and centrifugal matrix [15]. But there were
still some works concerning this problem. Using the spatial
vector notation [16], Niemeyer and Slotine proposed a
recursive scheme for the controller of [15], and the com-
putational load is OðnÞ [17]. Huo and Gao proposed a
much simpler scheme, via defining a new Coriolis and
centrifugal matrix which satisfies the skew-symmetric
property [18]. Zhu proposed the VDC control which real-
ized direct adaptive control directly based on the Newton-
Euler dynamics [19].

The studies in [17–19] considered only the recursive
form of direct adaptive control; nevertheless, to the best of
our knowledge, only a few works paid attention to the recur-
sive execution of the indirect adaptive or the composite
adaptive controller, probably because the use of the predic-
tion error expressed by the regression matrix makes it very
difficult to reduce the order of the computational complex-
ity. In this regard, Wang proposed a recursive scheme of
the composite adaptive controller using the Spatial Notation,
with a computational complexity Oðn2Þ, which reduces the
order of computational complexity compared with the non-
recursive composite adaptive controller [20].

In this paper, we design a recursive composite adaptive
controller and prove the stability directly based on
Newton-Euler equations in matrix form. The filtered first
joint torque is used to obtain a linear relationship of dynam-
ics. Deriving the algorithm into a recursive form, we success-
fully reduce the computational load to OðnÞ.

The rest of this paper is organized as follows: In
Section 2, the composite adaptive controller proposed by
Slotine and Li in [4] is revisited, followed by a description
of the Newton-Euler formulation which is based on the
matrices. Section 3 presents the recursive composite adaptive
controller and the stability analysis. Simulation results in
Section 4 demonstrate the effectiveness of this proposed
recursive scheme. Finally, the discussion and conclusion are
offered in Section 5.

2. Preliminaries

2.1. Composite Adaptive Controller. Firstly, it is necessary to
revisit the composite adaptive controller proposed by Slotine
and Li in [4], which is helpful to understand our recursive
composite adaptive control method. The dynamic model of
an n‐dof robot manipulator neglecting the frictional forces
can be expressed as follows:

M qð Þ€q +C q, _qð Þ _q +G qð Þ = τ, ð1Þ

where q ∈ℝn×1 is the position vector in the joint space,
M ∈ℝn×n is the inertia matrix; Cðq, _qÞ _q ∈ℝn×1 is the Coriolis
and centrifugal force, GðqÞ ∈ℝn×1 is the gravitational force,
and τ ∈ℝn×1 is the joint torque. The adaptive control prob-
lem is as follows: given the desired joint position, velocity,
and acceleration qd , _qd , €qd , and that the value of the joint
position q can be measured from the encoder, _q can be

obtained by numerical differentiation; the object of the
adaptive controller is that the tracking errors of all the
joints converge to zero, even if some dynamic parameters
are unknown.

The control law and adaptation law in [21] can be pre-
sented as follows:

τ =
∧
M qð Þ€qr +

∧
C q, _qð Þ _qr +

∧
G qð Þ −KDs, ð2Þ

_∧
θ = −Γ−1YT q, _q, _qr , €qrð Þs, ð3Þ

where _qr = _qd −Λ~q, ~q = q − qd , s = _~q +Λ~q = _q − _qr , Λ, and
KD are symmetric positive definite matrices; θ ∈ℝm×1 is
the vector containing the unknown dynamic parameters;

and
∧
θ is its estimate, eθ =∧θðtÞ − θ. The matrix Y is defined as

~M qð Þ€qr + ~C q, _qð Þ _qr + ~G qð Þ = Y q, _q, _qr , €qrð Þ~a, ð4Þ

where ~M =
∧
M −M, ~C =

∧
C −C, and ~G =

∧
G −G.

The adaptive update law of (3) is driven by the tracking
errors of the joint tracking motion; on the other hand, pre-
diction errors on filtered joint torques are requested to add
into the parameter estimates in the composite adaptive con-
troller [4]. Before giving the “composite adaptation law,” we
need to resolve the filtered joint torque to avoid the mea-
surement of the joint acceleration, filtering (1) with a first-
order filer λ/ðp + λÞ yields

τf =
ðt
0
w t − rð Þ M qð Þ€q + C q, _qð Þ _q +G qð Þ½ �dr =W q, _q, tð Þθ,

ð5Þ

where p is the Laplace variable, λ > 0 is the filter parameter,
and wðtÞ is the impulse response of the filter. Wðq, _q, tÞ is
the filtered regressor matrix. So the prediction errors e on
filtered joint torques can be obtained as follows:

e =∧τf − τf =W q, _qð Þeθ: ð6Þ

The composite adaptation update law can be described as

_∧
θ = −P YT q, _q, _qr , €qrð Þs +WTe

� �
, ð7Þ

where P is the adaptation gain, which is a constant matrix in
the case of the gradient adaptation.

To sum up, Equations (2) and (7) constitute the compos-
ite adaptive controller [3, 4].

2.2. Matrix-Based Newton-Euler Dynamics. In this part,
the classic Recursive Newton-Euler Algorithm (RNEA) is
rewritten by the form of general matrices. The frames of
the adjacent links are represented in Figure 1. All the
joints are rotating with the z axis. Define ivi ∈ℝ

3×1 and
iωi ∈ℝ

3×1 as the linear velocity and the angular velocity
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expressed in the frame ∑i, respectively. Define the general
velocity expressed in its own frame, as follows [19]:

iVi =
ivTi

iω
T
i

� �T
∈ℝ6×1: ð8Þ

The general velocity transferring formulation can be
obtained by the RNEA; for convenience, the presuper i is
omitted, which yields

Vi = iTi−1Vi−1 + z6 _qi, ð9Þ

where z6 = ½0 0 0 0 0 1�T and iTi−1 is the transform matrix
of the general velocity, which is defined as follows:

iTi−1 =
iCi−1 −iCi−1

i‐1pi‐1i
� �×

O3×3
iCi−1

24 35, ð10Þ

where iCi−1 is the rotational matrix and i−1pi−1i is the ori-
gin of frame ∑i expressed in the frame ∑i−1; let us define
ð⋅Þ× as the cross-product matrix of the vector ð⋅Þ.

The general acceleration transferring formulation is
expressed as follows:

_Vi = i _Ti−1Vi−1 + iTi−1
_Vi−1 + z6€qi, ð11Þ

where _V = dV/dt,

i _Ti−1 =
− iω

i‐1
i

� �×
iCi‐1

iω
i‐1
i

� �×
iCi‐1

i‐1pi‐1i
� �×

O3 − iω
i‐1
i

� �×
iCi‐1

264
375:

ð12Þ

For the link i, the dynamic equations expressed in frame
∑i can be written as

Mi ⋅ _Vi +Ci ⋅Vi +Gi = F∗i = Yiθi, ð13Þ

where F∗i is the total force (torque) acting on the link i,
Yi ∈ℝ6×13 is the regressor matrix of link i (refer to Zhu’s
book [19] for the definition of Yi), and θi ∈ℝ13×1 expresses
the inertial parameters of link i, where θi1 =mi, θi2 =mipici
ð1Þ, θi3 =mipicið2Þ, θi4 =mipicið3Þ, θi5 =mipicið1Þ2, θi6 =mipici
ð2Þ2, θi7 = mipicið3Þ2, θi8 =mipicið1Þ ∗ picið2Þ − Iicið1, 2Þ, θi9 =
mipicið1Þ∗ picið3Þ − Iicið1, 3Þ, θi10 =mipicið2Þ ∗ picið3Þ− Iicið2, 3Þ,
θi11 = Iicið1, 1Þ, θi12 = Iicið2, 2Þ, and θi13 = Iicið3, 3Þ [19]. The
inertial matrix, the Coriolis and centrifugal force matrix,
and the gravitational matrix are as follows:

Mi =
miI3×3 −mi

ipici
� �×

mi
ipici

� �×
iIci −mi

ipici
� �×

ipici
� �×

264
375,

Ci =
mi ωið Þ× −mi ωið Þ× ipici

� �×

mi
ipici

� �×
ωið Þ× ωið Þ×iIci + iIci ωið Þ× −mi

ipici
� �×

ωið Þ× ipici
� �×

264
375,

Gi =
mi

ICig

mi
ipici

� �×
ICig

24 35,
ð14Þ

where mi is the mass of the link, ipici is the position of the
center of mass of link i expressed in frame ∑i, and

iIci is
the inertia parameters of the link i. ICi is the rotational
matrix of the frame of link i respect with the inertial frame.
g is gravitational acceleration.

The force transferring formulation is expressed as

Fi = iþ1TT
i Fi+1 + F∗i : ð15Þ

The joint torques can be resolved as follows:

τi = z6TFi: ð16Þ

To sum up, Equations (9), (11), (15), and (16) are the
matrix formulations of the classic RNEA; the initial general
velocity, the initial general acceleration, and the general
force acting on the end-effector are set to be

V0 =O6×1, _V0 =O6×1, Fn+1 = −Fe: ð17Þ

3. Recursive Composite Adaptive Control

Based on the formulations in Section 2, the recursive com-
posite adaptive controller is given in this section.

The reference velocity and acceleration of every link can
be obtained by Equation (18); the forward recursive equa-
tions need to be propagated from the robot base to the tip,
for i = 1, 2,⋯n:

Vri = iTi−1Vr,i−1 + z6 _qri,Vr0 =O6×1,

_Vri = iTi−1
_Vr,i−1 + i _Ti−1Vr,i−1 + z6€qri, _Vr0 =O6×1:

ð18Þ

Ôi–1

Ôi+1Oi–1

Ôi Oi(i-1)thJoint (i-1)thLink

x
y

z

o

∑i–1

∑i

i–1pi

i thLink

∑I

(i)thJoint

Figure 1: The coordinate frame relationship between the links.
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The following backward recursive equations need to
be propagated from the robot tip to the base, for i = n,
n − 1, :::1:

Fri = i+1Ti

� �TFr,i+1 + ∧
Mi ⋅ _Vri +

∧
Ci ⋅Vri +

∧
Gi +KDi Vri −Við Þ, Fr,n+1

=O6×1,
ð19aÞ

or

Fri = i+1Ti

� �TFr,i+1 + Yri

∧
θi +KDi Vri −Við Þ, Fr,n+1 =O6×1,

ð19bÞ

where
∧
Mi,

∧
Ci,

∧
Gi,

∧
θi are the estimated values of Mi, Ci,

Gi, θi, and KDi ∈ℝ6×6 is the positive definite symmetric
feedback gain matrix.

Then, the control torque of every joint can be resolved
by Equation (20), as follows:

τi = z6TFri: ð20Þ

The above control law contains many estimated values
because of the unknown inertial parameters; meanwhile,
the parameter adaptive law is also needed. The torque
of the first joint is given as Equation (21), and the com-
putational load is OðnÞ. In fact, the first joint is located in
the innermost position; it contains all the parameter
information of every link. Using τ1 in the composite
adaptive law, which can utilize most of the response
information,

τ1 = z6T 〠
n

j=1

jTT
1 Mj ⋅ _Vj +Cj ⋅Vj +Gj

� �
: ð21Þ

Equation (21) needs to measure the joint accelerations;
utilizing a first-order low-pass filter, the filtered torque
can be resolved as

y =
ðt
0
w t − rð Þτ1dr

=
ðt
0
w t − rð Þz6T 〠

n

j=1

jTT
1 Mj ⋅ _Vj + Cj ⋅Vj +Gj

� �
dr

= z6T 〠
n

j=1

w 0ð ÞjTT
1Mj ⋅Vj −w tð ÞjTT

1Mj ⋅Vj 0ð Þ

+
ðt
0
w t − rð Þ j _TT

1MjVj + jTT
1Cj ⋅Vj + jTT

1Gj

� �
dr

2664
3775

= 〠
n

j=1
Wjθ j:

ð22Þ

So the linear relationship of dynamics is obtained. The
adaptive update law of every link can be resolved by the
following equation, which is similar with Equation (7).

_∧
θi = −Pi Yri

Tsi + γWT
i 〠

n

j=1
ej

" #
, ð23Þ

F0

F1
F2

F4

F3

a0

x1 x2

x3

x4

z2

z3
z4

z1

a1

a2

a3

a4

a5
F6F5

F7

x5

x7

zEE
yEE

xEE

z5
a6

a7

a8

FEE

x0

z0

y0

F0

y1

z7

y2

y3
y4

y5

x6y6

y7

z6

Figure 2: The coordinate frames of the manipulator.

Table 1: Physical parameters of the manipulator.

i-th link mi (kg) Iici (kg·m
2) pici (m) pi−1i (m)

1 50 diag[2 2 200] [0 -0.1 0] [0 -a1 0]

2 50 diag[2 2 200] [0 0.1 0] [0 a2 0]

3 100 diag[5 300 500] [2 0 0] [a3 0 0]

4 100 diag[5 300 500] [2 0 0.5] [a5 0 a4]

5 50 diag[2 2 200] [0 0 0.5] [0 0 a6]

6 50 diag[2 2 200] [0 0 0.5] [0 0 a7]

7 and load 100 diag[2 2 200] [0 0.5 1] [0 0 a8]
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where Pi ∈ℝ13×13 is a positive definite matrix, e j =Wj
eθj,eθj =∧θj − θ j; defining E =∑n

j=1e j as the prediction error,
Equation (23) is rewritten as follows:

_∧
θi = −Pi Yri

Tsi + γWT
i E

� �
, i = 1, 2,⋯, n: ð24Þ

To sum up, Equations (18), (19a), (19b), (20), and
(24) construct our recursive composite adaptive controller.

The stability verification of this recursive composite adap-
tive controller is also verified based on the subsystem dynam-
ics. Considering the total Lyapunov function candidate as

V = 〠
n

i=0
Vi, ð25Þ

where

Vi =
1
2

Vri −Við ÞTMi Vri −Við Þ + 1
2
eθiTP−1

i
eθi: ð26Þ

Differentiating Vi yields

_Vi = Vri −Við ÞTMi
_Vri − _Vi

� �
+ eθiTP−1

i
_eθi: ð27Þ

And according to the Appendix, it can be derived that

_V = −〠
n

i=1
Vri −Við ÞTKDi Vri −Við Þ − eθTWTWeθ

= −〠
n

i=1
Vri −Við ÞTKDi Vri −Við Þ − ETE ≤ 0,

ð28Þ

with eθ = ½eθT1 eθT2 ⋯ eθTn �T , W = W1 W2 ⋯ Wn½ �, and

E =Weθ. _V ≡ 0⟶ ðVri −ViÞ ≡ 0 for every i = 1, 2,⋯, n
and E ≡ 0, which means that the tracking error and the
production error both globally asymptotically converge to 0.

Remark 1. The computational complexity of the proposed
recursive composite adaptation is about 606nmultiplications
and 501n additions, which are much less than in [20] with
7730n2 + 131n multiplications and 454:5n2 − 82:5n addi-
tions. In the original composite controller [4], no consider-
ation has been devoted to its computational aspects. Thus,
computational complexity is no less than Oðn4Þ since the
computational complexity of the closed-form Lagrangian
dynamics is Oðn4Þ. We have achieved the computational
complexity ofOðnÞ, which is at the same scale as the recursive
direct adaptive controllers in [17–19].

4. Simulation Result

In this paper, the simulation results of our recursive
composite adaptive control algorithm are presented in
comparison with the direct adaptive control algorithm. The
coordinate frames of the manipulator of the Chinese Space
Station are plotted in Figure 2. The physical parameters are
listed in Table 1. The load and the end-effector are con-
nected in the final link, which is a combined link. The grav-
itational acceleration is assumed to be zero. The sampling
period used in the simulation is 2ms.

The parameters of the final row in Table 1 are set as
a1 = 0:5m, a2 = 0:5m, a3 = 4m, a4 = 0:5m, a5 = 4m, a6 =
0:5m, a7 = 0:5m, and a8 = 1m.The desired velocity of each
joint is set as qi = 5/180 ∗ π ∗ sin ðπ/10tÞrad, i = 1⋯ n. The
initial joint position and velocity are set as q0 = ½0:3, π/2 ; π/3;
−2π/3 ; π/3 ; π/2 ; 0:3�rad and _q0 =On×1, respectively. The
controller parameter in Equations (19a), (19b) is set as KDi =
10000 ∗ I6×6, Λi = 1. The initial value of the adaptation gain
is set as Pi,0 = 100 ∗ I13×13, γ = 0:1. The initial inertia
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Figure 3: The tracking errors of the joint position: the direct adaptive controller (left) and the recursive composite adaptive controller (right).
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parameters are zeros. The tracking errors of the two
methods are shown in Figure 3, and the parameter estimate
figure is plotted in Figure 4. The results of all the links are
similar; for briefness, only the parameter estimates of the
final link have been shown in this paper.

Through the comparison of the direct adaptive control-
ler, the tracking errors are obviously decreased by using
the recursive composite adaptive controller. And the param-
eter estimates converge fast with the recursive composite
adaptive controller.

5. Discussion

In this paper, a new recursive composite adaptive controller
was proposed. The computational load is linear with the
numbers of the joints, which is attractive especially for the
redundant multijoint manipulator. The tracking errors are
satisfied. And the convergence speed of the parameters of
the proposed method is obvious. Additionally, the stability
of the proposed algorithm is also proven based on the sub-
system dynamics, which is more convenient.

Appendix

Proof of Stability

In Equation (27),Mi
_Vri andMi

_Vi can be replaced by the fol-
lowing equations, as follows:

Mi
_Vri = F∗ri − ~Mi ⋅ _Vri − ~Ci + Ci

� �
⋅Vri − ~Gi +Gi

� �
−KDi Vri −Við Þ,

Mi ⋅ _Vi = F∗i −Ci ⋅Vi −Gi:

ðA1Þ

Equation (27) can be transformed as follows:

_Vi = − Vri −Við ÞTKDi
_Vri − _Vi

� �
+ Vri −Við ÞT F∗ri − F∗rð Þ

− Vri −Við ÞTYTeθ − Vri −Við ÞTCi
_Vri − _Vi

� �
+ eθiTP−1

i
_eθi,

ðA2Þ

where ðVri −ViÞTCið _Vri − _ViÞ = 0,because Ci is an antisym-
metric matrix. Substituting the adaptive control law Equa-
tion (24) into Equation (A2), the following equation is
obtained:

_Vi = − Vri −Við ÞTKDi Vri −Við Þ + Vri −Við ÞT F∗ri − F∗rð Þ

− γeθiTWT
i 〠

n

j=1
Wj

eθj,
ðA3Þ

where

Vri −Við ÞT F∗ri − F∗rð Þ
= Vri −Við ÞT Fri − iþ1T

T
i Fr,i+1 − Fi + iþ1T

T
i Fi+1

� �
= Vri −Við ÞT Fri − Fið Þ − Vri −Við ÞT iþ1T

T
i Fr,i+1 −

iþ1T
T
i Fi+1

� �
= Vri −Við ÞT Fri − Fið Þ − Vr,i+1 −Vi+1ð ÞT Fr,i+1 − Fi+1ð Þ::

ðA4Þ
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Therefore,

_V = −〠
n

i=1
Vri −Við ÞTKDi Vri −Við Þ + Vr0 −V0ð ÞT Fr0 − F0ð Þ

− Vr,n+1 −Vn+1ð ÞT Fr,n+1 − Fn+1ð Þ

− γ eθT1 eθT2 ⋯ eθTnh i
WT

1

WT
2

⋮

WT
n

26666664

37777775 W1 W2 ⋯ Wn½ �

eθ1eθ2
⋮eθn

266666664

377777775
= −〠

n

i=1
Vri −Við ÞTKDi Vri −Við Þ − eθTWTWeθ ≤ 0,

ðA5Þ

where ðVr0 −V0Þ = 0 because the velocity of the base of the
manipulator is zero. ðFr,n+1 − Fn+1Þ = 0, because there is no
external force acting on the final link of the manipulator.
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