Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals

Jiacheng Cao, Qian Chen, Xiaoshan Wang, Qiang Zhang, Hai-Dong Yu, Xiao Huang, and Wei Huang

1Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
2Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China

Correspondence should be addressed to Hai-Dong Yu; iamhdyu@nwpu.edu.cn, Xiao Huang; iamxhuang@njtech.edu.cn, and Wei Huang; iamwhuang@nwpu.edu.cn

Received 13 November 2020; Accepted 22 March 2021; Published 21 April 2021

Copyright © 2021 Jiacheng Cao et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Sensors, capable of detecting trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for environmental monitoring, food safety, health diagnostics, and national defense. In the era of the Internet of Things (IoT) and big data, the requirements on gas sensors, in addition to sensitivity and selectivity, have been increasingly placed on sensor simplicity, room temperature operation, ease for integration, and flexibility. The key to meet these requirements is the development of high-performance gas sensing materials. Two-dimensional (2D) atomic crystals, emerged after graphene, have demonstrated a number of attractive properties that are beneficial to gas sensing, such as the versatile and tunable electronic/optoelectronic properties of metal chalcogenides (MCs), the rich surface chemistry and good conductivity of MXenes, and the anisotropic structural and electronic properties of black phosphorus (BP). While most gas sensors based on 2D atomic crystals have been incorporated in the setup of a chemiresistor, field-effect transistor (FET), quartz crystal microbalance (QCM), or optical fiber, their working principles that involve gas adsorption, charge transfer, surface reaction, mass loading, and/or change of the refractive index vary from material to material. Understanding the gas-solid interaction and the subsequent signal transduction pathways is essential not only for improving the performance of existing sensing materials but also for searching new and advanced ones. In this review, we aim to provide an overview of the recent development of gas sensors based on various 2D atomic crystals from both the experimental and theoretical investigations. We will particularly focus on the sensing mechanisms and working principles of the related sensors, as well as approaches to enhance their sensing performances. Finally, we summarize the whole article and provide future perspectives for the development of gas sensors with 2D materials.

1. Introduction

Acting as an indispensable component in the era of the Internet of Things, gas sensors have been intensively studied and applied in a broad range of fields including gas emission control, agricultural and industrial production, military defense, environmental safety, and medical diagnostics [1–3]. High sensitivity, good selectivity, and rapid response/recovery time, as well as ambient working conditions, are the main requirements for high-performance gas sensors.

The gold standard for gas analysis has been spectroscopy-based techniques, typically including gas chromatography (GC), infrared (IR) absorption spectroscopy, and Raman scattering spectroscopy. GC is able to perform multicomponent analysis by separating different gas components in the chromatographic column according to their distribution coefficients between the mobile phase (i.e., the carrier gas) and the stationary phase (e.g., a solid adsorbent or liquid support) [4]. Separated gas components will successively enter a detector that converts the component signals to electric signals by various means, such as the thermal conductivity detector [5] and flame ionization detector [6]. Owing to the limited detection capability of these detectors, mass spectrometry and optical spectrosocies have been coupled with GC to obtain better qualitative and quantitative information [7–10]. The IR absorption spectroscopy is based
on the selective adsorption of laser radiation of gas molecules, mostly in the middle-infrared wavelength, which can induce the change of the dipole moment of gas molecules, reflected in the position and intensity of their adsorption spectra; different gas molecules usually have their own characteristic spectral lines like “fingerprints” showing both the qualitative and quantitative information. However, the IR spectroscopy still has some limitations, such as a restricted selectivity, especially being inactive to diatomic homonuclear molecules such as nitrogen, oxygen, and hydrogen [11]. The Raman scattering spectroscopy, which involves the inelastic scattering of photons upon interaction with gas molecules, is capable of providing fingerprints for a wide range of gas molecules including those inactive to IR adsorption spectroscopy [12]. However, due to the relatively weak signal of the Raman scattering spectroscopy, higher power laser sources or cavity-enhanced Raman spectroscopy techniques are needed for precise detection [13].

The abovementioned spectroscopic sensing techniques, despite their robustness, usually require expensive and bulky instruments and thus are not easily accessible and not suitable for applications that require on-site investigation and in situ monitoring. Alternative gas sensing techniques are therefore being developed in parallel for reduced cost and better portability. These gas sensors include electrical sensors, such as electrochemical sensors [14], chemiresistors [15], field-effect transistors (FETs) [16], Schottky diodes [17], conductometric (or chemiresistive) sensors [18], and impedance sensors [19], and optical sensors, such as fiber optic gas sensors [20] and photonic crystal gas sensors [21]. Although conventional gas sensing materials such as metal oxides, conducting polymers, and carbon nanotubes have long been developed and applied in commercial gas sensors, they still suffer from problems such as limited selectivity, poor reproducibility, and, in most cases, high operating temperatures [22–24]. Therefore, the exploration and development of alternative gas sensing materials require continuous efforts.

Two-dimensional (2D) atomic crystals, such as metal chalcogenides (MCs), black phosphorus (BP), and MXenes, are considered attractive candidates for the fabrication of gas sensors due to their ultrahigh specific surface areas with massive reactive sites for interaction with gas molecules, thickness-dependent physical and chemical properties, tunable surface functionalities, solution phase production for scalable device fabrication, and ability to assemble into three-dimensional (3D) architectures with controllable porosities [25–29]. 2D materials have been mostly explored in the form of a chemiresistive gas sensor (Figure 1(a)), field-effect transistor (FET) (Figure 1(b)), quartz crystal microbalance (QCM) (Figure 1(c)), fiber optic gas sensor (Figure 1(d)), and photonic crystal gas sensor (Figure 1(e)). Their basic working principles are described as follows.

Chemiresistive gas sensors have a relatively simple configuration. Typically, sensing materials, such as 2D materials, are cast as a film to connect two predeposited electrodes or on top of an interdigitated electrode (Figure 1(a)). The adsorption of target gas molecules can lead to resistance change of the sensing film, mostly through the exchange of charge carriers. The resistance change, i.e., $S(\%) = \left(\frac{R_f - R_0}{R_0}\right) \times 100\%$, where R_0 is the film resistance in the air or inert gas, and R_f is the film resistance when exposed to the target gas at equilibrium, reflects the sensitivity of the sensor.

Resembling the chemiresistive gas sensors, FET gas sensors also respond to gas adsorption via resistance change (or conductance change) of the sensing channel, which connects the source and drain electrodes (Figure 1(b)). Its advantage is that the sensing response can be tuned by adjusting the gate bias which controls the carrier concentration in the channel and thus tunes the amount of charge carriers in exchange with the absorbed gas molecules. More details will be given in Section 2.1.1.

A quartz crystal microbalance (QCM), typically consisting of a quartz crystal sandwiched between two parallel metal electrodes, is capable of providing extremely sensitive mass measurement in the scale of nano- to microgram per unit area (cm^2). A QCM makes use of the piezoelectric property of the quartz crystal, which oscillates under an applied voltage across the two electrodes. Its resonant frequency decreases upon mass loading. The relationship between the frequency shift (Δf) and the mass load (Δm) is described by the Sauerbrey equation, $\Delta f = -2.62 \times 10^{-6} f_0^2 (\Delta m/A)$, where f_0 is the intrinsic resonant frequency of the piezoelectric crystal and A is the surface area of the circular electrode [30]. For gas sensing, the mass loading (or stress) induced by the gas adsorption on the electrode surface is transferred to the quartz crystal below to induce its frequency change (Figure 1(c)). Depositing 2D materials onto the surface of the electrode can help increase the amount of gas adsorption sites and improve the selectivity of the QCM gas sensor [31–33].

One of the most common optical gas sensors is the fiber optic type as shown in Figure 1(d). Its main component is a waveguide consisting of a fiber core and the surrounding cladding. The core has a higher refractive index than the cladding, allowing the light to travel along with the fiber core via total reflection; a small portion of the light is transmitted as evanescent waves perpendicular to the fiber axis with intensity reduced exponentially in the cladding [20]. The adsorption of gas molecules on the cladding changes its refractive index, resulting in the change of the output light signals such as its intensity and wavelength. However, gas adsorption-induced change in the material refractive index is limited in selectivity, and therefore, the cladding is usually functionalized with molecules or nanomaterials, such as 2D materials, which have a specific affinity toward the target gas.

Another similar type of optical gas sensor is the photonic crystal (PC) gas sensor Figure 1(e), where the abovementioned optic fiber is replaced with PCs, which are, mostly, artificial optical materials with periodic changes in the refractive index [34]. When the fiber cladding has a higher refractive index than the PC core with air channels, according to the photonic bandgap theory, light with frequency in the range of the PC bandgap will be bound in and transmit along the air channel with low energy loss [21]. The air channels also serve as cells for the introduction of target gas molecules, which change the refractive index of the PC core and thus change the output light. Functionalization of the PCs with 2D materials is able to enhance the selectivity of the optical gas sensor, which will be discussed in Section 2.1.4.
The gas adsorption on a 2D material can lead to changes in a number of its properties such as its carrier concentration, carrier mobility, work function, band positions (or redox potentials), and oxidation states, as well as the refractive index. A deep understanding of the processes behind the output changes is of paramount importance in designing and developing novel and advanced sensing materials and devices. This contribution is thus aimed at providing a comprehensive review on the recent development of gas sensors based on 2D materials, discussing their sensing mechanisms, influencing factors, and approaches to enhance the gas sensing performance. As gas sensors based on graphene and related materials have been reviewed previously [35–38], this review will mainly cover gas sensors based on other 2D atomic crystals, such as MCs, MXenes, and BP, as well as their composites/heterostructures.

2. Metal Chalcogenides (MCs)

Metal chalcogenides (MCs) in general have a chemical formula of MX₂ or MX where M is a transition metal such as Nb, Ta, Mo, and W or a posttransition metal such as Sn and In, and X is a chalcogen species such as S, Se, and Te (Figure 2(a)) [39]. They exist in various crystal phases that correlate to their electronic properties (Figure 2(b)) [40]. Most of them are layered structures, and adjacent MX₂ or MX layers are stacked together via the weak van der Waals forces. Therefore, single- or few-layer MCs can be prepared by top-down methods, such as mechanical cleavage, ultrasonication-assisted liquid-phase exfoliation, and chemical or electrochemical intercalation and subsequent exfoliation [41, 42]. In addition, bottom-up methods, mainly including vapor-based methods such as the physical and chemical vapor deposition (PVD, CVD) and wet chemical methods such as the solvothermal/hydrothermal method, have also been employed to synthesize 2D MCs [43–46]. Due to their attractive chemical, electrochemical, and optoelectronic properties [47–49], MCs are considered promising materials for various applications such as electronic devices [50], catalysis [51], photothermal therapy [52], and energy storage devices [53].

Unlike pristine graphene, which is a gapless semimetal and suffers from poor selectivity when it comes to molecular detection, the tunable band structures of 2D MCs make them attractive candidates for the fabrication of electrical gas sensors [38, 47, 54]. Up till now, not all the MCs have been explored for gas sensing, and the most studied MCs for gas sensing are MoS₂, WSe₂, MoSe₂, WSe₂, ReS₂, ReSe₂, SnS₂, GaS, and GaSe. Whether a MC material is suitable for gas sensing is dependent on a number of factors, such as its bandgap, doping type and level, and surface chemistry. For example, metallic NbS₂ and VSe₂ may not be suitable for sensing because of their low electrical resistance and vice versa for the insulating HfS₂. Other factors that should also be taken into consideration when designing MC-based gas sensing materials, such as the alloying, layer number, and presence of heterojunctions, will be introduced in detail in Sections 2.1 and 2.2. For example, MCs such as MoS₂ [55] and WS₂ [56] have been used to detect NO₂, and MoSe₂ [57] has been used to sense NH₃ and ethanol (Table 1). Most MC-based electrical gas sensors are based on the charge transfer mechanism [1, 38, 56, 58–64], while sensing via surface reaction and proton conduction has also been proposed [65–68]. Besides, sensing via gas adsorption-induced change of the refractive index has been explored in MC-functionalized optical sensors [20, 21].

![Figure 1: Schematic illustration of (a) a chemiresistive gas sensor, (b) a bottom-gated FET sensor, (c) a quartz crystal microbalance (QCM) gas sensor, (d) a fiber optic gas sensor, and (e) a photonic crystal gas sensor involving 2D materials.](image-url)
2.1. Basic Working Principles

2.1.1. Sensing via Charge Transfer. Gas sensing via charge transfer can be interpreted as electron (or hole) transport between a sensing film and the target gas. Depending on whether the gas is oxidizing (e.g., NO₂ and SO₂) or reducing (e.g., NH₃ and acetone) and the sensing film is an n- or p-type semiconductor, electrons are withdrawn from or donated to the sensing film. For example, mechanically exfoliated n-type MoS₂ nanosheets showed an increased resistance upon NO₂ adsorption and decreased resistance under NH₃ exposure [55], and hydrothermally synthesized p-type WS₂ nanosheets presented a reduced resistance toward NO₂ and an opposite response toward NH₃ [70].

The dopant type of MCs is dependent on their compositions (or alloying), crystal structures, and their preparation methods as shown in Table 1.

The selectivity of this type of sensor largely depends on the ability of the sensing material to bind with the target gas and the tendency to receive or donate electrons toward the gas. For example, experimental studies have shown good selectivity of MoS₂ sensors toward NO₂ gas [71], which agrees with theoretical calculation results that the adsorption energies of NO₂/NO gases on MoS₂ are generally lower and the amount of electrons transferred is higher as compared to that toward other gases including CO, CO₂, NH₃, NO, NO₂, CH₄, H₂O, N₂, O₂, and SO₂ (Figure 3) [72].

In addition to the intrinsic properties of gas adsorption, there are other factors that can influence the sensing response of MC-based gas sensors via charge transfer, which will be discussed in the following context.

(1) Electrode Channel Contact. When a metal and a semiconductor are in contact with each other, either a Schottky barrier or an Ohmic contact is formed depending on the semiconductor type and the relative position of their work functions [73]. Specifically, taking an n-type semiconductor as an example, when its work function W_s is smaller than that of the electrode (W_m), i.e., $W_m > W_s$, the two Fermi levels tend to reach the same level once they are in close contact, and the band of the semiconductor near the interface tends to bend upward, resulting in the formation of a potential barrier called the Schottky barrier (Figure 4(a)). Only electrons with energies higher than the potential barrier can travel across the interface [74], and thus, the current is mainly controlled by the barrier height and width of the depletion layer [75]. When $W_m < W_s$, the band of the semiconductor tends to bend downward at the interface where an electron accumulation region could form (Figure 4(b)), leading to an Ohmic contact.

The Schottky barrier present at a semiconductor-metal interface is an important tunable factor influencing its gas sensing performance [76–78]. According to previous studies...
<table>
<thead>
<tr>
<th>Target gas</th>
<th>Materials</th>
<th>Mechanism</th>
<th>Detection limit/minimum detected concentration</th>
<th>Response/sensitivity</th>
<th>Temperature</th>
<th>Type</th>
<th>Dopant type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>4 nm MoS₂</td>
<td>Charge transfer</td>
<td>1.2 ppm</td>
<td>6.1% @ 1.2 ppm</td>
<td>RT</td>
<td>FET</td>
<td>n-type</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>5-layer MoS₂</td>
<td>Charge transfer</td>
<td>/</td>
<td>1372% @ 1000 ppm</td>
<td>RT</td>
<td>FET</td>
<td>n-type</td>
<td>[55]</td>
</tr>
<tr>
<td>NO₂</td>
<td>MoS₂ nanowire network</td>
<td>Charge transfer</td>
<td>4.6 ppb/1 ppm</td>
<td>18.1% @ 5 ppm</td>
<td>60°C</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[62]</td>
</tr>
<tr>
<td></td>
<td>Vertically aligned MoS₂ layers</td>
<td>Charge transfer</td>
<td>~2.3 ppb/1 ppm</td>
<td>16.2% @ 1 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[60]</td>
</tr>
<tr>
<td>NO₂</td>
<td>MoS₂</td>
<td>Charge transfer</td>
<td>/</td>
<td>98% @ 10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[80]</td>
</tr>
<tr>
<td>NO₂</td>
<td>MoS₂</td>
<td>Charge transfer</td>
<td>0.1 ppb/25 ppb</td>
<td>4.9% @ 1 ppb</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[64]</td>
</tr>
<tr>
<td>NO₂</td>
<td>Monolayer MoS₂</td>
<td>Dipole scattering</td>
<td>0.15</td>
<td>8.6% @ 1 ppb</td>
<td>RT</td>
<td>FET</td>
<td>n-type</td>
<td>[126]</td>
</tr>
<tr>
<td>NH₃</td>
<td>5-layer MoS₂</td>
<td>Charge transfer</td>
<td>/</td>
<td>86% @ 1000 ppm</td>
<td>RT</td>
<td>FET</td>
<td>n-type</td>
<td>[55]</td>
</tr>
<tr>
<td>NH₃</td>
<td>Single-layer WS₂</td>
<td>Charge transfer</td>
<td>50 ppm</td>
<td>3.14% @ 500 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[61]</td>
</tr>
<tr>
<td>NH₃</td>
<td>WS₂ nanosheets</td>
<td>Charge transfer</td>
<td>5 ppm</td>
<td>3.4% @ 10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[117]</td>
</tr>
<tr>
<td>Ethanol</td>
<td>MoSe₂ nanosheets</td>
<td>Charge transfer</td>
<td>10 ppm</td>
<td>~18% @ 20 ppm</td>
<td>90°C</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[57]</td>
</tr>
<tr>
<td>Ketone</td>
<td>MoTe₂</td>
<td>Charge transfer</td>
<td>0.2 ppm</td>
<td>~58% @ 100 ppm</td>
<td>RT</td>
<td>FET</td>
<td>p-type</td>
<td>[59]</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>MUA-conjugated MoS₂</td>
<td>Charge transfer</td>
<td>A few ppm</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Acetone</td>
<td>MUA-conjugated MoS₂</td>
<td>Charge transfer</td>
<td>A few ppm</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Toluene</td>
<td>MUA-conjugated MoS₂</td>
<td>Charge transfer</td>
<td>10 ppm</td>
<td>/</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[112]</td>
</tr>
<tr>
<td>Hexane</td>
<td>MUA-conjugated MoS₂</td>
<td>Charge transfer</td>
<td>10 ppm</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Ethanol</td>
<td>MUA-conjugated MoS₂</td>
<td>Charge transfer</td>
<td>100 ppm</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>H₂S</td>
<td>WS₂ nanowire-nanoflake hybrid</td>
<td>Surface reaction</td>
<td>20 ppb</td>
<td>4.3% @ 1 ppm</td>
<td>200°C</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[68]</td>
</tr>
<tr>
<td>NO₂</td>
<td>Hierarchical hollow MoS₂ microspheres</td>
<td>Surface reaction</td>
<td>0.5 ppm</td>
<td>40.3% @ 100 ppm</td>
<td>150°C</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[116]</td>
</tr>
<tr>
<td>NH₃</td>
<td>WS₂ nanoflakes</td>
<td>Surface reaction</td>
<td>1 ppm</td>
<td>~900% @ 10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[67]</td>
</tr>
<tr>
<td>Humidity</td>
<td>MoS₂/graphene oxide nanocomposite</td>
<td>Proton conduction</td>
<td>/</td>
<td>~200% @ 45% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>n-type</td>
<td>[65]</td>
</tr>
<tr>
<td>NO₂</td>
<td>Ultrathin WS₂ nanosheets</td>
<td>/</td>
<td>0.1 ppm</td>
<td>9.3% @ 0.1 ppm</td>
<td>25°C</td>
<td>Chemiresistor</td>
<td>p-type</td>
<td>[70]</td>
</tr>
<tr>
<td>NO₂</td>
<td>NbSe₂/WSe₂</td>
<td>/</td>
<td>0.12 ppm</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>NO₂</td>
<td>BP/MoSe₂</td>
<td>/</td>
<td>10 ppb</td>
<td>~10.5% @ 25 ppb</td>
<td>RT</td>
<td>FET</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Humidity</td>
<td>Graphene/MoS₂ composite</td>
<td>/</td>
<td>/</td>
<td>61% @ 500 ppm</td>
<td>RT</td>
<td>Fiber optic</td>
<td>Refractive index</td>
<td>[105]</td>
</tr>
</tbody>
</table>

Table 1: Selected examples of gas sensors based on MCs.
<table>
<thead>
<tr>
<th>Target gas</th>
<th>Materials</th>
<th>Mechanism</th>
<th>Detection limit/minimum detected concentration</th>
<th>Response/sensitivity</th>
<th>Temperature</th>
<th>Type</th>
<th>Dopant type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>WS₂/WSe₂</td>
<td>/</td>
<td>/</td>
<td>57 times @ 80% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>/</td>
<td>[141]</td>
</tr>
<tr>
<td>Acetone</td>
<td>Sn₀.₅W₀.₅S₂/SnS₂</td>
<td>/</td>
<td>0.1 ppm</td>
<td>0.60% @ 0.4 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>/</td>
<td>[137]</td>
</tr>
<tr>
<td>Methanol</td>
<td>MoS₂</td>
<td>/</td>
<td>2.7 ppm</td>
<td>0.37 ppm @ ppm</td>
<td>RT</td>
<td>Photonic crystal</td>
<td>/</td>
<td>[107]</td>
</tr>
</tbody>
</table>

Table 1: Continued.
The $I-V$ curve of a semiconductor-electrode contact has a basic correlation with the Schottky barrier height:

$$I = I_0 \exp \left(\frac{qV}{nkT} \right) \cdot \left[1 - \exp \left(-\frac{qV}{nkT} \right) \right], \quad (1)$$

Here, q is the electron charge, n is the ideality factor, k is the Boltzmann constant, T is the absolute temperature, S is the contact area, A is the Richardson constant, and Φ_b is

$$I_0 = SAT^2 \exp \left(-\frac{\Phi_b}{kT} \right). \quad (2)$$
the Schottky barrier height. The above two equations indicate that the current varies exponentially with the Schottky barrier height. Therefore, the charge transfer upon gas adsorption, which can change the Fermi level of the semiconductor and in turn vary the Schottky barrier height [80], can lead to a large current response of the sensor. As an example, Kim et al. [81] fabricated p-type MoS2-based gas sensors with three kinds of metal electrodes, i.e., Au, Ag, and Al. The sensors with the Al electrode exhibited the best sensing response toward NO2 (Figures 5(a) and 5(b)). This was attributed to the lower work function of Al (4.06 eV) as compared with Au (5.1 eV) and Ag (4.26 eV), thus the higher Schottky barrier height when in contact with MoS2 (Figures 5(c) and 5(e)). After the NO2 adsorption, the amplitude of the change of the Schottky barrier height in the Al-MoS2-based gas sensor was higher than the others (Figures 5(d) and 5(f)), leading to the highest sensing response.

As for the Ohmic contact, although it is characterized by a linear I-V curve with a relatively low contact resistance as compared to the Schottky contact [82], the change of its resistance, on the contrary, is less affected by gas adsorption.

(2) Layer Number. The electronic properties of 2D materials, such as band levels and carrier mobilities, are very much dependent on their thickness or layer number [29, 55, 83, 84]. This, as expected, can lead to the layer number-dependent gas sensing behavior.

It is generally accepted that thinner nanosheets can provide a larger surface-to-volume ratio for gas adsorption, and the enlarged bandgap and varied band positions may help tune the energy barriers for charge transfer with gas molecules. However, ultrathin 2D materials are prone to environmental perturbations. For example, single- or few-layer MoS2 showed lower mobilities than multilayer or bulk MoS2, which is likely caused by the Coulomb potential built up by charges trapped in the substrate (e.g., Si/SiO2) [85, 86]. In addition, a reduced carrier concentration in thinner nanosheets may also pose an adverse effect on its sensing response [29, 85, 87]. For example, Li and coworkers found that a single-layer MoS2 FET sensor showed an unstable and lower response toward NO as compared to double- to four-layer MoS2 [88]. Similarly, Late et al. [55] observed poor sensing performance in a double-layer MoS2-based FET gas sensor as compared to a five-layer MoS2 FET.

Increasing the layer number of 2D materials may provide a reduced gas binding energy at interlayer adsorption sites, bringing benefit to gas sensing. Through first-principle calculations, Qin et al. [61] suggested that the interlayer adsorption sites for NH3 in few-layer or bulk WS2 have higher binding energy (-0.356 eV) than the surface adsorption sites on a monolayer WS2 (-0.179 eV), and the corresponding net charge transferred is 0.038 and 0.006 e, respectively. Besides, the recovery time and sensing response of the thicker nanosheets were found to be both larger than the thinner ones. It is however worth noting that too high a binding energy, such as that involved in chemisorption, may not be desirable for gas sensing due to the difficulty in gas desorption.

On the basis of the above discussion, it can be inferred that although tuning MC thicknesses can change a number of their properties such as charge carrier mobility, carrier density, band levels, and specific affinity toward gas adsorption, the dominating factor or factors that control the gas sensing performance require systematic investigations and consideration case by case.

(3) Working Temperature. Temperature is an important parameter affecting gas sensing performance, especially for electrical sensors [89]. Raising the temperature can increase the carrier concentration of a semiconducting sensing material, promote surface reactions, and result in a higher response; besides, higher temperatures can also enhance the kinetics of the gas adsorption and desorption process, simultaneously influencing the profile of the response curve [22, 90]. An early investigation of the temperature effect by Zhang et al. [57] suggests that increasing the temperature would lower the energy barrier for ethanol adsorption on MoSe2, resulting in the enhanced charge transfer and higher response (Figures 6(a) and 6(b)).

However, when a sensor operates in the air, interference from water and other gases would complicate the temperature effect. Conventional metal oxide-based gas sensors require elevated working temperatures (typically >150°C), because target gas molecules interact strongly with preadsorbed high-temperature oxygen species, and the conductance of a metal oxide improves at higher temperatures [91]. A similar principle can be applied to MC-based sensors. Kumar et al. [62] reported that a NO2 sensor based on a MoS2 nanowire network showed a higher response at 60°C than at room temperature. Apart from the conductivity improvement, raising the temperature to 60°C could induce desorption of oxygen and water molecules originally capped on the MoS2 surface, thus providing more room for NO2-MoS2 interaction. As a result, a good selectivity at 60°C was also achieved with this sensor (Figure 6(c)). At further elevated temperatures, for example, 120°C, a sharp decrease of the sensing response was observed, probably because the desorption of NO2 surpassed its adsorption as the interaction between NO2 and MoS2 is an exothermic process. Similarly, Shim et al. also observed a reduced sensing performance of a MoS2-based NO2 sensor when the temperature was increased from 50 to 200°C (Figure 6(d)) [60]. They suggested that high-temperature oxygen species, i.e., O2−, O−, and O2−, might emerge at elevated temperatures (e.g., 150°C) and occupy the surface active sites of MoS2 (Figures 6(e) and 6(f)). From the above two examples, it can be seen that at room temperature to slightly elevated temperatures (e.g., 60°C), a target gas like NO2 will compete with O2 and H2O in the air to be absorbed on the sensing material; at further elevated temperatures, most O2 and H2O molecules will desorb from the sensor surface and instead oxygen anions will form and compete with NO2 for adsorption sites.

It is worth noting that, for the detection of electron-accepting gases such as NO2 or NO, common interference gases like O2 and H2O in the air may affect the selectivity of the sensor due to their competition with the target gas for adsorption sites.
on the sensor surface. Therefore, a careful choice of the working temperature may help eliminate the influence from O₂ and H₂O and achieve better selectivity. On the other hand, for the detection of electron-donating gases like NH₃ or acetone, the O₂⁻, O⁻, and O₂²⁻ species present at elevated temperatures are beneficial for the improvement of the sensor selectivity and sensitivity owing to the interaction between these oxygen species and the electron-donating gases.

(4) Application of the Gate Bias for FET Sensors. Most FET gas sensors adopt the bottom-gated configuration, where the semiconductor channel is directly exposed to the target gas. Taking the n-type channel as an example, applying a negative gate bias (V_G < V_T < 0), where V_G is the gate voltage and V_T is the threshold voltage) can increase the hole concentration and form the minority carrier channel between the drain and the source electrode (Figures 7(a) and 7(b)) [89, 92, 93]. In the case of V_G > 0 (Figures 7(c) and 7(d)), the bias can induce an electron accumulation region. The bias-induced formation of either a charge depletion or an accumulation region can assist in modifying the gas sensing behavior of the device. An example to illustrate this approach would be the n-type MoS₂ nanosheet-based FET sensor fabricated by Late et al. [55]. When a positive gate bias is applied to the sensor, additional electrons are accumulated at the contact interface between the MoS₂ and the dielectric gate material. Upon exposure to oxidizing gases like NO₂, electrons from the accumulation region interact with and are transferred to NO₂, leading to the enhanced sensing performance; oppositely, when the sensor is exposed to reducing gases like NH₃, the accumulated electrons would repel electrons from NH₃ molecules and thus in turn decrease the sensing response.

2.1.2. Sensing Involving Surface Reactions. Gas sensing with conventional metal oxide-based gas sensors usually involves surface reactions between preabsorbed oxygen species (O²⁻, O⁻, and O₂²⁻) and target gas molecules at elevated temperatures [22, 94–98]. Likewise, chemical reactions on MC
surfaces can also take place at elevated temperatures, leading to improved sensing performance. For example, Asres et al. reported that a WS2-based gas sensor exhibited excellent sensitivity (0.043 ppm\(^-1\)) and high selectivity (Figure 8(a)) toward H2S at 200°C [68]. They suggested that under ambient conditions, the O\(_2\) in the air can substitute some of the S atoms in WS\(_2\) to form WS\(_{2-x}\)O\(_x\). When exposed to H\(_2\)S at elevated temperatures, part of the O atoms in WS\(_{2-x}\)O\(_x\) could be replaced by S from H\(_2\)S to yield WS\(_{2-y}\)O\(_y\) until a new equilibrium is reached.

In another interesting work, Li et al. demonstrated that the sensing performance of WS\(_2\) nanoflakes toward NH\(_3\) could be improved at higher humidity due to the proposed hydroxylation reaction as shown below [67]:

\[
\text{SO}_4^{2-}\text{(WS}_2\text{ surface}) + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{SO}_4^{2-} + \text{OH}^- \quad (3)
\]

The increased surface acidity in humid conditions could help attract more basic NH\(_3\) molecules to donate electrons. Besides, higher humidity may enable more NH\(_3\) molecules bound to the WS\(_2\) surface via the "solvation" effect according to the equation below:

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \quad (4)
\]

The resulting NH\(_4^+\) ions would further react with the adsorbed oxygen ions to donate electrons to WS\(_2\):

\[
\text{NH}_4^+ + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} + \text{e}^- \quad (5)
\]

Because of the reaction-assisted sensing pathway, this sensor exhibits an unrivaled selectivity toward NH\(_3\) against other electron-donating gases such as acetone and ethanol (Figure 8(b)).

It can be inferred from the above examples that surface reactions with target gases on MC-based sensing materials mainly involve water vapor- and oxygen-related species (i.e., O\(_2\), O\(_2^-\), O\(^-\), and O\(^{2-}\)) in the air. Although these reactions may enhance the sensing response and selectivity, they

Figure 6: (a) Typical sensing response curves of the MoSe\(_2\) nanosheet-based sensor toward 20 ppm ethanol at different temperatures. (b) Response and recovery time of the MoSe\(_2\), nanosheet sensor as a function of operating temperatures. (c) Relative response of various gases at the optimum temperature (60°C) of the sensor [57], copyright 2019 Elsevier Ltd. (d) Transient response of the SiO\(_2\) nanorods encapsulated by MoS\(_2\) to 50 ppm NO\(_2\) at different operating temperatures. Schematic illustration of the reaction mechanism at (e) room temperature and (f) high operating temperatures [60], copyright 2018 American Chemical Society.
Figure 7: Schematic illustration of two modes of applying a gate bias to tune the performance of an FET gas sensor: (a) formation of the minority carrier channel at $V_G < V_T < 0$, and the (b) corresponding energy band level diagram; (c) formation of the majority carrier accumulation region at $V_G > 0$, and the (d) corresponding energy band level diagram. E_c, E_f, E_i, and E_v denote the conduction band, Fermi level, intrinsic Fermi level, and valence band, respectively.

Figure 8: (a) Sensitivity of the five different sensors, displaying high selectivity toward H_2S (0.023 ppm$^{-1}$ at 1 ppm). The data point labeled with an asterisk denotes the sensitivity (0.043 ppm$^{-1}$) measured at 20 ppb H_2S [68], copyright 2018 Springer Nature. (b) The selectivity of the WS$_2$ nanoflake-based sensor to different gases at RH = 40% [67], copyright 2017 Elsevier Ltd.
may also bring problems of long response time, slow desorption, and poor reusability.

2.1.3. Sensing via Proton Conduction. One of the most accepted proton conduction mechanisms, the Grotthuss mechanism or the hopping mechanism, was proposed in 1806 by Theodor von Grothuss and named after him [99]. This process exists in all liquid water, in which protons are tunneled from one water molecule to an adjacent one through hydrogen bonding (Figure 9(a)) [66]. The proton conduction based on the Grothuss mechanism therefore has also been proposed as a plausible mechanism to explain many humidity sensing phenomena in addition to electron/hole transfer [66, 100, 101]. For example, MoS₂ nanosheets were used for humidity sensing by Burman et al. [65]. They suggested that at relatively low humidity, water molecules chemisorbed on MoS₂ surfaces are dissociated into hydroxyl ions (OH⁻) and protons (H⁺), and the OH⁻ ions were preferentially adsorbed at the S-vacancy sites (Equation (6)) [102]. Because the formed water layer is not continuous at this stage to support the effective proton conduction, the main sensing mechanism is still based on charge transfer from water to n-type MoS₂. As the relative humidity increases, more water molecules are physisorbed on top of the chemisorbed water layer to form a second layer and dissociated into hydronium groups (H₃O⁺) and hydroxyl ions (OH⁻) (Equation (7)). Then, proton conduction via hopping can take place in both water layers, leading to a sudden rise of the sensing response (Figure 9(b)).

$$
\text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{OH}^- \quad \text{(for lower humidity levels)} \quad (6)
$$

$$
2\text{H}_2\text{O} \leftrightarrow 2\text{H}_3\text{O}^+ + \text{OH}^- \quad \text{(for higher humidity levels)} \quad (7)
$$

Since MCs are generally sensitive to humidity to various extent, humidity becomes an unneglectable influencing factor when MCs are used for gas sensing in the air. As reported by Xu et al. [70], their WS₂-based impedance NO₂ sensor showed a reduced baseline with increasing humidity. This is because H₂O molecules adsorbed on WS₂ would be dissociated into H⁺ or H₃O⁺ ions, which, under an electrostatic field, could transport via the hopping mechanism (Figure 9(c)). The baseline change led to a reduction in the sensing response (Figure 9(d)). This negative effect of humidity can be reduced via approaches such as noble metal decoration, coating with a hydrophobic film, and construction of p-n junctions [22, 103, 104].

2.1.4. Sensing via Change of the Refractive Index. As mentioned in the introduction (Figures 1(d) and 1(e)), fiber-based optical gas sensors, which are based on gas adsorption-induced change of the refractive index, have been combined with 2D materials for improved selectivity. For example, Sangeetha and Madhan [105] substituted a portion of the cladding with the graphene-MoS₂ nanoparticle composite, whose refractive index changed upon gas adsorption, leading to a change in the evanescent field, further influencing the light intensity transmitted through the waveguide. This sensor achieved good sensitivity (61%), rapid response (22 s), short recovery time (35 s), and appreciable selectivity, as well as good stability toward 500 ppm NO₂. It is important to note that although the sensitivity of this type of sensor is not comparable with electrical sensors which can detect sub-ppm level NO₂, they are suitable for sensing at long distances, especially in situations involving dangerous environments [106].

Compared to the measurement of light intensity, monitoring the shift of the light wavelength may provide better selectivity and precision. Taking the advantage of PC-based optical sensors, Zhao et al. [107] incorporated MoS₂ with the SiO₂-based PC cavity slab in a fiber optic sensor for methanol detection. The refractive index of MoS₂ varies when methanol molecules are adsorbed on its surface, which shifts the resonance wavelength of the PC. Different from electrical sensors whose selectivity mainly comes from the ability of gases to donate or withdraw electrons, the selectivity of this type of optical sensor mainly depends on the polarity of the gases in addition to the strength of the interaction between the gas and the MoS₂. Although the sensor responds not only to methanol but also to acetone and ether, it shows the highest response to methanol, which is important since selective methanol detection has been difficult to be realized with electrical sensors. More importantly, this sensor showed an ultrafast response (300 ms) and could enable the real-time monitoring of the light spectrum when coupled with IR adsorption spectroscopy or Raman scattering spectroscopy [108, 109].

2.2. Approaches to Improve Sensing Performance. To date, various approaches have been explored to enhance the performance of gas sensors based on 2D materials, such as ligand functionalization, creation of 3D porous structures, light activation, and formation of 2D heterostructures (Figure 10), which are introduced in the following context.

2.2.1. Ligand Functionalization. The functionalization of MCs with organic molecules can modulate their surface chemistry, surface charge states, and electronic structures [45, 110, 111], which in turn modifies their gas sensing behaviors. For example, Kim et al. [112] functionalized the MoS₂ surface with mercaptopendecanoic acid (MUA) and compared its gas sensing performance with that of primitive MoS₂. The primitive MoS₂ showed an increased resistance toward five different gases, including toluene, hexane, ethanol, propionaldehyde, and acetone, regardless of their redox nature (Figure 11(a)). Therefore, the gas dipole-induced charge scattering was proposed to be the dominant mechanism behind the conductance reduction (Figure 11(b)). In sharp contrast, the MUA-conjugated MoS₂ showed decreased resistance upon exposure to oxygen-functionalized gases including ethanol, propionaldehyde, and acetone. This is because the carboxyl groups of MUA molecules could interact with the oxygen-containing functional groups in these gas molecules via the formation of hydrogen bonds to promote the electron transfer toward MoS₂ through the saturated alkyl chains of MUA (Figure 11(c)). It is interesting to note that by surface modification, the sign of the sensing response to a
specific gas can be inverted, providing another means for selectivity enhancement.

2.2.2. Creation of Porous 3D Assemblies of MCs. The construction of porous 3D assemblies of MCs is able to maximize their exposed surfaces for gas-solid interactions and enables fast gas diffusion and recovery kinetics [62, 113–115]. This was recently demonstrated by Li et al. [116], who showed that hierarchical hollow MoS 2 microspheres exhibited a higher specific surface area and improved gas permeability, thus leading to an enhanced gas sensing performance toward NO 2 as compared to solid spheres or smooth spheres (Figures 12(a) and 12(b)). It is noteworthy that the selectivity of the sensor is also good (Figure 12(c)), which was attributed to not only the specific interaction between NO 2 and MoS 2 but also the size-selective penetration of different gases through the pores of the hierarchical hollow MoS 2 microspheres. In another interesting work by Asres et al. [68], 1D nanowires and 2D nanosheets of WS 2 were combined together for H 2S sensing. While the nanowires provided a continuous conductive network with percolated channels for gas diffusion, the thin 2D nanosheets provided large surface areas to adsorb gas molecules on both basal faces and edges.

2.2.3. Light Activation. Light illumination on semiconductors can enhance their sensing performance by inducing photogenerated charge carriers [117]. For example, Pham et al. [64] reported that an n-type MoS 2-based optoelectronic NO 2 sensor exhibited an improved sensing response under the red light illumination as compared to the dark. It was suggested that the oxygen ions originally absorbed on the surface of MoS 2 could trap electrons to prevent them from interacting with NO 2 (Figure 13(a)). The additional electrons generated by red light activation were not bound to the oxygen ions, and some of them were free to be transferred to NO 2 molecules to raise the sensing response (Figure 13(b)).

Different excitation energies can have different effects on the sensing response. In a very systematic study, Gu et al. [117] found that both ultraviolet (UV) light (365 nm) and near-infrared (NIR) light (940 nm) can help improve the performance of an WS 2-based NH 3 sensor at 40°C (Figure 13(c)), but are based on different mechanisms. Under
Figure 10: Schematic illustration of strategies for improving the gas sensing performance: (a) ligand functionalization, (b) creation of 3D porous structures, (c) light activation, and (d) formation of 2D heterostructures.

Figure 11: (a) Sensor responses of primitive (blue curves) and MUA-conjugated (red curves) MoS$_2$ sensors for target VOCs. Schematic illustration of the interaction between the VOC molecules and the surface of (b) primitive MoS$_2$ and (c) MUA-conjugated MoS$_2$ [112], copyright 2015 American Chemical Society.
940 nm light illumination, which is about the bandgap of WS₂, the photogenerated electrons could interact with O₂ to yield O₂⁻(hv) ions absorbed on WS₂. These O₂⁻(hv) ions, as compared to the preabsorbed oxygen ions (O₂⁻(ads)) under dark conditions, are more energetic to interact with the target NH₃ gas molecules [117–122], thus resulting in the enhanced sensing performance. Under 365 nm illumination, on the other hand, the light energy was able to excite not only WS₂ but also electrons localized in the highest occupied molecule orbit (HOMO) of NH₃ from their ground state [117, 123–125]; these excited electrons in NH₃ were more likely to be transferred to WS₂, resulting in a larger resistance change (Figure 13(d)). Furthermore, because of this light activation of NH₃ molecules, the sensor showed the best selectivity under 365 nm light excitation as compared to under 940 nm light or without light (Figure 13(e)).

A new sensing mechanism was recently reported by Tabata et al. [126]. They found that the common charge transfer mechanism cannot explain the sensing phenomenon they observed with a MoS₂ monolayer-based NO₂ sensor under light activation. As shown in Figures 13(f)–13(i), the response values are almost independent of the light irradiance (or power). If charge transfer is the main mechanism, at varied radiances, the amount of charge transferred at the same gas concentration should be the same, whereas the film current should vary with irradiance due to the different amounts of photoinduced charge carriers. Therefore, the sensor response should also vary with irradiance, which contradicts the experimental observation. The authors thus proposed that the adsorbed NO₂ molecules do not change the density of photoexcited carriers in MoS₂; rather, they act as scattering centers to disrupt electron drifting in MoS₂, which reduces the carrier mobility. In addition, the photostimulated adsorption and desorption could increase the response and recovery rate (Figures 13(j)–13(l)).

In addition, the light illumination is not only able to alter the carrier concentration of the sensing material but also able to modify the properties of certain target gas molecules. For example, Wu et al. [59] observed opposite sensing responses of a MoTe₂-based acetone sensor with and without light illumination. This is because the UV activation of the acetyl group of acetone can induce its transformation from a weak reducing agent into a weak oxidizing agent. Such unique chemical characteristic of ketone molecules may enable their selective detection in a VOC mixture.

2.2.4. Formation of MC-Based Heterostructures. Heterostructures that combine dissimilar 2D materials have shown interesting properties that differ from their individual 2D components [127, 128]. Based on the different spatial arrangements of the 2D constituents in a heterostructure, they can be classified as vertical or lateral heterostructures. The vertical heterostructures can be created via stacking different 2D crystals one above another, stabilized by the weak van der Waals force [129–132]. The lateral heterostructures are constructed from edge-connected 2D crystals, creating 1D interfaces [133]. In terms of the type of constituent 2D materials, on the other hand, 2D heterostructures can be classified as either metal-semiconductor heterostructures or semiconductor-semiconductor heterostructures. Based on such classification, in the following context, we introduce gas sensors whose performances are enhanced via the formation of heterostructures.

(1) Metal-Semiconductor MC Heterostructures. For many metal chalcogenides, their electronic properties, for example, whether they are metallic or semiconducting, are largely
dependent on their compositions and crystal phases [134, 135]. Therefore, metal-semiconductor MC heterostructures can be designed and prepared via controllable synthesis and post-synthesis treatment. As mentioned in Section (4), a Schottky barrier or Ohmic contact can form at the interface between a metal and a semiconductor, depending on the semiconductor type and the relative position of their work functions.

Cho et al. prepared vertical metallic NbSe₂/semiconducting WSe₂ heterostructures with a Nb₂W₁₋ₓSe₂ transition layer at the heterojunction (Figures 14(a)–14(c)) by selenization of WO₃ and Nb₂O₅ films sequentially deposited on a sapphire substrate via the CVD method [136]. Note that the original Schottky barrier height between the p-type WSe₂ sensing layer and the Au electrode was 94 meV. This was considerably reduced to 25 meV when WSe₂ was made in contact with the metallic NbSe₂ via the Nb₂W₁₋ₓSe₂ transition layer. The much-reduced barrier height for charge transfer across the electrode-semiconductor interface resulted in a rise in responses toward both NO₂ and NH₃ (Figures 14(d) and 14(e)). The enhancement in sensing of NO₂ is more profound than that in sensing of NH₃, resulting in high selectivity toward NO₂ (Figure 14(f)).

Metallic 2D materials can act not only as the electrode but also as the active sensing material when interfacing with semiconducting 2D materials. Wang and coworkers epitaxially deposited NH₄⁺-intercalated Sn₀.₅W₀.₅S₂ nanosheets on the top and bottom surfaces of n-type SnS₂ nanoplates to form vertical metal-semiconductor heterostructures with the Ohmic-type interface (Figures 14(g)–14(i)) [137]. The acetone sensing film fabricated from such sandwiched nanoheterostructures exhibited a much-reduced film resistance.
Figure 14: (a) Schematic of the cross-sectional crystal structure of the NbSe$_2$ (metallic layer)-Nb$_x$W$_{1-x}$Se$_2$ (transition layer)-WSe$_2$ (semiconducting layer) heterojunction. (b) Atomic resolution annular dark-field (ADF) scanning transmission electron microscopy (ADF-STEM) image of the Nb$_x$W$_{1-x}$Se$_2$ transition layer. (c) Schematic image of the NbSe$_2$/WSe$_2$ gas sensing device and crystal structure of the metallic NbSe$_2$ (left red box) and semiconducting WSe$_2$ (right blue box). Transient resistance responses to (d) NO$_2$ and (e) NH$_3$ analyte gases for both NbSe$_2$/WSe$_2$ and Au/WSe$_2$. (f) Gas responses under various gases (NO$_2$, NH$_3$, H$_2$S, and H$_2$) at concentrations of 1 ppm for both devices [136], copyright 2016 American Chemical Society. (g) Side-view TEM image of the Sn$_{1-x}$W$_x$S$_2$/SnS$_2$ heterostructure. (h) I-V curves measured with tunneling atomic force microscopy (TUNA) for a Sn$_{0.5}$W$_{0.5}$S$_2$/SnS$_2$ heterostructure, under a constant force and an applied bias voltage that was linearly ramped down. (i) Schematic band alignment diagram for Sn$_{0.5}$W$_{0.5}$S$_2$/SnS$_2$ and SnS$_2$ before and after contact. E_F, E_{CB}, and E_{VB} denote the Fermi level, conduction band, and valence band, respectively. (j) Response-recovery curves of a typical chemiresistive sensor fabricated from Sn$_{0.5}$W$_{0.5}$S$_2$/SnS$_2$ heterostructures in response to acetone gas with increasing concentrations. Inset: zoomed-in response of the sensor toward 0.1 and 0.2 ppm acetone. (k) Comparison of the responses of the sensor toward different gases, including acetone, diethyl ether, propanal, toluene, and NO$_2$ [137], copyright 2018 Nature Publishing Group. (l) TEM image of a thin Mo$_{1-x}$W$_x$S$_2$ layer. (m) Normalized resistance changes of a typical chemoreceptive sensor fabricated from Mo$_{0.87}$W$_{0.13}$S$_2$ (~10% 1T) in response to acetone gas with increasing concentrations. (n) Normalized change of resistance of different sensors at various acetone concentrations [138], copyright 2017 The Royal Society of Chemistry.
As a result, a 35 times lowered background noise and a higher signal-to-noise ratio were achieved. Besides, the formation of Sn0.5W0.5S2 alloy led to increased adsorption energy toward acetone, realizing selective acetone sensing at the 100 ppb level (Figure 14(j)). In addition, compared to other gases like diethyl ether and propanal, acetone has a stronger ability to donate electrons, leading to an appreciable selectivity (Figure 14(k)).

Crystal phase heterostructures of MCs which are constructed from chemically homogeneous but structurally different domains have also shown interesting electronic properties [139]. The use of such phase heterostructures in different domains have also shown interesting electronic functionalities and hydrophilicity are normally achieved at the expense of their electrical conductivity, MXenes exhibit excellent electrical conductivity and possess hydrophilic surfaces with functional groups [145, 148, 152]. These features make them appealing candidates in electrical sensing devices, where good electrical conductivity for low background noise and surface functional groups for interacting with gas molecules are both essential requirements.

3.1. Sensing Mechanisms. Similar to MCs, charge transfer upon gas adsorption has been proposed as a possible mechanism for MXene-based gas sensors [1, 154]; however, some contradictory phenomena have been observed. For example, Kim et al. [152] found that a Ti3C2Tx-based sensor showed increased channel resistance regardless of whether the target gas is donating or withdrawing electrons. This is in sharp contrast to the dopant type-dependent gas sensing behavior observed in most semiconducting sensing materials. One possible explanation is that most MXenes are narrow-bandgap semiconductors or metal-like, and thus, charge transfer from the target gas could not cause much change in their conductivity [152]. On the contrary, the gas adsorption-induced charge scattering, which reduces the channel mobility of MXene, might become the dominant cause of the resistance increase [155].

Whether a MXene-based gas sensor is working based on the charge transfer, carrier scattering, or both, its sensing behavior is dependent on factors such as its composition, surface chemistry, and dopant type/concentration, as well as working temperature (Table 2) [155–158].

3.1.1. Effect of Terminal Groups. Most MXenes can be prepared by HF etching or fluoride-based salt etching [145, 151, 159]. The etching process is sometimes accompanied by the ion intercalation into the interlayer spaces, for example, with large solvent molecules such as dimethyl sulfoxide (DMSO) under sonication [160]. Alternatively, the etching and delamination process can be combined into one step, especially when fluoride-based salts are used as the etchants [142, 161]. The processing conditions such as the type and concentration of etchant, the etching period and temperature, and the subsequent sonication time and temperature [151] all have influences on the size/thickness, crystallinity, and surface chemistry of the resulting MXene nanosheets/nanoflakes [142].

As-exfoliated MXenes generally have mixed terminal groups (–OH, –O, and –F) [162, 163], and the ratio between them is dependent on the exfoliation process and the subsequent treatment. For example, as-prepared MXene nanosheets can be rinsed with or stored in water to obtain a higher -OH ratio [164]; and a higher concentration of -O can be achieved by etching with fluoride-based salt rather than HF [162].

The electronic transport properties of MXenes could be influenced considerably by their surface terminal
groups [165, 166]. Theoretical works have predicted that many MXenes are intrinsically metallic without surface groups (e.g., -F, -OH, or -O) [167, 168]. The surface functional groups may turn their intrinsic metallic nature into semiconducting with calculated bandgaps varying between 0.25 and 2.0 eV [154, 169]. Lee et al. [27] identified that as-prepared Ti$_3$C$_2$T$_x$ nanosheets were p-type semiconductors, and NH$_3$ molecules could be absorbed preferentially on their surface defects or functional groups such as -O and -OH to donate electrons and increase the film resistance.

Figure 15: Schematic for the exfoliation process of MAX phases and formation of MXenes [153], copyright 2012 American Chemical Society.

Table 2: Selected examples of gas sensors based on MXenes.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Target gas</th>
<th>Detection limit/minimum detected concentration</th>
<th>Response/sensitivity</th>
<th>Temperature</th>
<th>Type</th>
<th>Mechanism</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_3$C$_2$T$_x$</td>
<td>Acetone</td>
<td>0.011 ppb</td>
<td>0.97% @ 100 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>Scattering</td>
<td>[152]</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>Sub-ppb</td>
<td>1.7% @ 100 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH$_3$</td>
<td>0.13 ppb</td>
<td>0.8% @ 100 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propanal</td>
<td>/</td>
<td>0.88% @ 100 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ti$_3$C$_2$T$_x$	Acetone	9.27 ppm	0.075% @ 100 ppm	RT	Chemiresistor	Charge transfer	[27]
	Ethanol	/	0.115% @ 100 ppm				
	Methanol	/	0.143% @ 100 ppm				
	NH$_3$	/	0.21% @ 100 ppm				

| Ti$_3$C$_2$T$_x$| Ethanol | / | 9.995% @ 1000 ppm | RT | Chemiresistor | Charge transfer | [176] |

| Ti$_3$C$_2$T$_x$| Humidity | / | 60 times response change @ 11–95% RH | RT | Chemiresistor | Charge transfer | [174] |
| | NH$_3$ | / | 28.87% @ 100 ppm | | | | |

3D Ti$_3$C$_2$T$_x$	Acetone	50 ppb	0.10–0.17 @ ppm	RT	Chemiresistor	Charge transfer	[186]
	Ethanol	/					
	Methanol	/					
	NH$_3$	/					

| Ti$_3$C$_2$T$_x$/WSe$_2$ hybrid| Ethanol | 1 ppm | 0.24% @ ppm | RT | Chemiresistor | Charge transfer | [177] |
Among the -O, -OH, and -F terminal groups on Ti2C2Tx, the -F group, as theoretically predicted, is likely to induce the largest electron transmission and thus the highest current at a given bias [166]. Therefore, controlling the relative -F concentration is able to effectively modulate the electrical conductivity of the MXene which is an important parameter affecting the gas sensing performance [150]. The -OH terminal group, on the other hand, could provide partially occupied nearly free electron (NFE) states in MXenes. The NFE states are located near the Fermi level and therefore can provide the hole and electron channels under low bias voltages. Examples of MXenes that exhibit the NFE states include Ti2C(OH)2, Zr2C(OH)2, Zr2N(OH)2, Hf2N(OH)2, Nb2C(OH)2, and Ta2C(OH)2 [169–171]. Importantly, the NFE states are sensitive to environmental perturbations; for example, they might be diminished upon adsorption of gases like O2, H2, and CO [169, 171]. Thus, MXenes with -OH terminal groups are suitable for gas sensors.

In most cases, -O, -OH, and -F terminal groups coexist in MXenes, and studies have found that different terminal ratios may lead to different affinities toward certain gases. By using the first-principle simulation, Hajian et al. [172] compared the gas adsorption behaviors of Ti2C(OH)0.44F0.88O0.66 and Ti2C(OH)0.66F0.22O1.11 toward NH3, CO2, NO, H2S, and SO2. Both MXenes showed stronger and specific interaction with NH3 than with other gases; the Ti2C(OH)0.66F0.22O1.11 with a higher -O/-F termination ratio was found to be slightly more sensitive toward NH3, as indicated by a more negative adsorption energy (-0.49 eV) and a larger amount of charge transfer (0.099 e) as compared with Ti2C(OH)0.44F0.88O0.66 (-0.36 eV and 0.098 e, respectively).

3.1.2. Doping. The specific affinity of MXenes for a target gas can be controlled by elemental doping. For example, Mn-doped Sc2CO2 showed a much higher adsorption energy of -0.85 eV for CO as compared with pristine MXene (-0.14 eV), along with a 10 times increased charge transfer, i.e., from 0.017 e to 0.199 e, per CO molecule [173].

3.2. Modification of Sensing Properties

3.2.1. Intercalation. The polar groups decorated on both sides of MXene sheets render them highly hydrophilic and enable the facile intercalation of ions and polar molecules. Recently, Yang et al. [174] intercalated alkali metal ions (e.g., Na+) into Ti3C2Tx and demonstrated its potential for humidity sensing (Figures 16(a) and 16(b)). The sensor exhibited a 60 times increase in response as the RH was increased from 33% to 95% (Figures 16(c) and 16(d)). Such good performance was attributed to the improved H2O adsorption in the presence of Na+ ions via the formation of [Na(H2O)2]1+ clusters (Figure 16(e)). This in turn increased the amount of H2O molecules to transfer charges to Ti3C2Tx. Besides, the intercalation-induced electronic decoupling between layers might improve the conductivity as well [175].

In fact, MXenes with intercalated ions and water molecules could be advantageous in the selective sensing of polar vapor molecules. This was demonstrated by Koh et al. [176] that laminated Ti3C2T x treated with NaOH solution exhib-
Figure 16: SEM images of (a) Ti$_3$C$_2$T$_x$ and (b) alkalized Ti$_3$C$_2$T$_x$. Gas sensing performance of NaOH-treated Ti$_3$C$_2$T$_x$ sensors at room temperature. Response of the devices based on (c) Ti$_3$C$_2$T$_x$ and (d) alkalized Ti$_3$C$_2$T$_x$ to different relative humidity levels. (e) Schematic diagram of the adsorption of H$_2$O molecules on the surface of alkalized Ti$_3$C$_2$T$_x$ [174], copyright 2019 American Chemical Society. (f) Real-time gas response behavior of Ti$_3$C$_2$T$_x$ sensors fabricated with various concentrations of NaOH (0.03, 0.3, 5, and 100 mM) upon exposure to 1% CO$_2$ and 0.1% ethanol. The inset in (f) shows the magnified gas response of CO$_2$. (g) Ethanol selectivity of gas sensors calculated by dividing the response toward ethanol over the response toward CO$_2$ [176], copyright 2019 American Chemical Society.
therefore is able to control the direction and quantity of the charge transfer [182, 184, 185]. In a recent theoretical investigation based on first-principle calculations, Ma et al. [181] reported that the adsorption energy and charge transfer of SO2 on Sc2CO2 could be modulated by applying an electric field (Figures 18(d) and 18(e)). It is interesting that the amount of charge transferred from Sc2CO2 to SO2 increases linearly as the electric field is increased from negative to positive, a trend that is less obvious in other systems involving 2D layered dichalcogenides such as Ti3C2T x, Zr2CO2, and Ti3CO2 (Figure 18(d)). This is attributed to the stronger interaction between SO2 and Sc2CO2 due to the intrinsic net dipole moment present in the monolayer Sc2CO2. It is also important to note that the external field should not be too high to ensure easy desorption of gas molecules.

4. Black Phosphorus

Layer-structured black phosphorus (BP) was previously prepared from white phosphorus through high-temperature and high-pressure treatments [187]. Alike graphene, monolayers of BP stack together via the van der Waals interaction to form layered BP crystals [188]. Isolated single-layer BP, also termed phosphorene, was firstly prepared via the scotch tape-based microcleavage method [189]. The hole mobility of bulk BP is about 1000 cm2 V−1 s−1, and that for phosphorene can reach up to 10,000 cm2 V−1 s−1 [190–192]. Similar to the other 2D atomic crystals, BP possesses the thickness-dependent bandgap energy, which varies from ~1.5 eV for the monolayer to ~0.3 eV for the bulk BP [29, 188]. This correlates to light adsorption covering wavelengths ranging from the near-infrared to middle-infrared bands which is in between that of graphene and that of MCs [193, 194]. These advantages make BP extremely attractive for electronics and optoelectronics, and therefore, they have been extensively explored in applications such as memories [195, 196], photodetectors [197, 198], and sensors [199, 200].

For gas sensing, in particular, BP has demonstrated several attractive features. For example, BP possesses a high theoretical surface-to-volume ratio due to its puckered double-layer structure, which can offer abundant adsorption sites for target analytes [201]. Besides, BP has been predicted to possess high adsorption energies toward many small gas molecules such as NOy, NO, NH3, CO, and SO2 [202–204]. In the following contents, we introduce BP-based gas sensors, emphasize their working principles involving charge transfer, surface reaction, and mass change, and describe strategies used to enhance their gas sensing performance (Table 3).

4.1. Sensing Mechanisms

4.1.1. Sensing via Charge Transfer. Alike MCs and MXenes, charge transfer is the dominant gas sensing mechanism for BP. In an early demonstration, a multilayer p-type BP-based FET NO2 sensor was fabricated by Abbas et al., and a minimum detectable concentration down to 5 ppb was
achieved (Figures 19(a) and 19(b)) [199]. The change of conductance as a function of NO\textsubscript{2} concentration could be fitted well with the Langmuir isotherm, suggesting that the NO\textsubscript{2} adsorption-induced charge transfer is the dominant cause of the conductance change (Figure 19(c)). It was later pointed out by Cho and coworkers that BP exhibited a higher adsorption energy for NO\textsubscript{2} as compared to graphene and MoS\textsubscript{2} based on DFT calculations [205], and they experimentally demonstrated the superior sensing performance of BP in terms of sensitivity, response time, and selectivity [205].

A systematic DFT calculation study by Kou et al. reveals the different adsorption behaviors of several gas molecules including CO, CO\textsubscript{2}, NH\textsubscript{3}, NO, and NO\textsubscript{2} on BP (Figures 19(d)–19(r)) [202]. The carbon atoms of CO molecules and nitrogen atoms of NH\textsubscript{3} molecules are likely located at the center of the puckered honeycomb of BP, whereas CO\textsubscript{2}
molecules are adsorbed at the bridges of the P-P bonds. Among these gases, only NO interacts with BP via the formation of P-N bonds, whereas other gases stay above the basal layer at a distance without bond formation. Their results also indicate larger adsorption energies and enhanced charge transfer of N-based gases (e.g., NO\(_2\) and NH\(_3\)) on BP as compared to CO and CO\(_2\).

From the previous knowledge gained from graphene and MC-based gas sensors, and considering the fact that BP possesses a direct bandgap that increases when reducing the layer number [189, 206], it can be expected that BP also exhibits the thickness-dependent sensing behavior. Cui and coworkers suggested that a thinner BP nanosheet with a larger bandgap and less intrinsic carriers might transfer less charges to a target gas, e.g., NO\(_2\). However, a thicker BP with a smaller bandgap would undergo less change of conductivity due to its high carrier concentration [29]. Therefore, an optimum thickness exists to maximize the gas sensing performance. They predicted that nanosheets with 4.3-10 nm thickness could deliver the best sensitivity (Figure 20(a)). This agrees with their experimental result: the sensor based on \(\sim 4.8\) nm BP nanosheets exhibited higher responses toward sub-ppm levels of NO\(_2\) than those based on bulk BP and BP with thicknesses ranging from 6 to 200 nm (Figures 20(b)–20(d)), along with an extremely good selectivity (Figure 20(e)).

The gas adsorption-induced charge transfer can be reflected, in addition to the resistance change mentioned above, also as a change of impedance [207]. As an example, layered BP nanosheets were used to sense methanol vapor via electrochemical impedance spectroscopy (EIS) measurements by Mayorga-Martinez and coworkers [208]. The sensor showed high selectivity and sensitivity toward 28 ppm methanol under an alternative current (AC) frequency of 1 kHz. The equivalent circuit is shown in Figure 20(f), which consists of the resistance and capacitance components. The resistance change was attributed to the charge transfer from the target gas to BP [209], whereas the capacitance change arose from the change of dielectric constants at the Au electrode/BP interface, which is related to the number of absorbed gas molecules based on polarization [210]. For example, methanol and ethanol have different dielectric constants of 32.7 and 24.6 and different resonance frequencies of \(\sim 10^3\ Hz\) and over \(10^5\ Hz\), respectively. Such difference enables the selective detection of methanol realized at \(10^3\ Hz\) [208].

Similar to many semiconductor electronic devices, the supporting substrate such as SiO\(_2\)/Si for a BP-based sensing film can introduce dopants, scattering centers, or traps that can modify BP’s electrical transport properties and influence its sensing performance [211, 212]. To alleviate the effect of the substrate, Lee and colleagues fabricated a gas sensor by placing a BP nanoflake over a wet-etched SiO\(_2\) trench in a SiO\(_2\)/Si substrate (Figure 20(g)) [213]. Due to the elimination of charge scattering from the substrate and the increased gas adsorption sites on both sides of a suspended BP nanoflake, the sensor showed a 23% higher response and a two times faster rate of desorption toward 200 ppm NO\(_2\) as compared with BP supported on the substrate (Figure 20(h)).

4.1.2. Surface Reaction

The surface hydrophilicity of BP and its susceptibility to surface reactions have enabled its application in humidity sensing [214]. The charge transfer from water to BP has been suggested by several groups as the main working principle for BP-based humidity sensors [32, 215, 216]. First-principle calculations by Cai and coworkers also showed that each H\(_2\)O molecule could donate about 0.035 e to CO and CO\(_2\). The autoionization of water and ionic dissolution of the acid

<table>
<thead>
<tr>
<th>Materials</th>
<th>Target gas</th>
<th>Response</th>
<th>Detection limit/minimum detected concentration</th>
<th>Temperature</th>
<th>Type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>NO(_2)</td>
<td>1600% @ 20 ppm</td>
<td>20 ppm</td>
<td>RT</td>
<td>FET</td>
<td>[29]</td>
</tr>
<tr>
<td>BP</td>
<td>NO(_2)</td>
<td>2.9% @ 5 ppm</td>
<td>5 ppm</td>
<td>/</td>
<td>FET</td>
<td>[199]</td>
</tr>
<tr>
<td>BP</td>
<td>NO(_2)</td>
<td>80% @ 1 ppm</td>
<td>0.1 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[205]</td>
</tr>
<tr>
<td>BP</td>
<td>NH(_3)</td>
<td>13% @ 10 ppm</td>
<td>80 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[188]</td>
</tr>
<tr>
<td>BP</td>
<td>Humidity</td>
<td>~4 orders @ 10%-85% RH</td>
<td>10% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[218]</td>
</tr>
<tr>
<td>BP</td>
<td>Humidity</td>
<td>~521% @ 97% RH</td>
<td>/</td>
<td>25°C</td>
<td>FET</td>
<td>[215]</td>
</tr>
<tr>
<td>BP</td>
<td>Humidity</td>
<td>99.17% @ 97.3% RH</td>
<td>11.3% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[216]</td>
</tr>
<tr>
<td>BP</td>
<td>Humidity</td>
<td>3145 Hz @ 97.3% RH</td>
<td>11.3% RH</td>
<td>RT</td>
<td>QCM</td>
<td>[31]</td>
</tr>
<tr>
<td>Pt/BP</td>
<td>H(_2)</td>
<td>50% @ 4%</td>
<td>500 ppm</td>
<td>RT</td>
<td>FET</td>
<td>[219]</td>
</tr>
<tr>
<td>Pt/BP</td>
<td>H(_2)</td>
<td>500% @ 1%</td>
<td>10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[224]</td>
</tr>
</tbody>
</table>
could generate a large number of mobile ions and thereby decrease the resistance of the BP channel.

4.1.3. Sensing via Mass Change. As mentioned in Introduction, BP can be fabricated into QCM-based humidity sensors because of the high affinity of BP for water molecules. For example, Yao et al. [31] fabricated a QCM-based humidity sensor by depositing BP nanosheets onto the electrode surface of a QCM (Figure 22(a)). The change in the resonance frequency (Δf) of the quartz correlates to the amount of water molecules adsorbed on BP. A large response, i.e., 863 Hz, 1698 Hz, and 3145 Hz of the frequency shift for the three sensors fabricated with an increasing amount of BP (QCM-2, QCM-4, and QCM-6 correspond to 2, 4, and 6 μL of BP nanosheets deposited on the electrode), respectively, was achieved as the humidity was increased from 11.3% to 97.3% (Figures 22(b) and 22(c)). Such a high response was also accompanied by a fast response and recovery time, good repeatability, and long-term stability. The selectivity of this type of gas sensor depends on the specific adsorption of BP toward water molecules.

4.2. Approaches to Enhance Gas Sensing Performance of BP. Very recently, to enhance the sensing performance of BP, strategies such as the incorporation of metal nanoparticles (NPs) and adatom doping have been explored (Figures 23(a) and 23(b)) [219, 220]. Generally speaking, the effects of NP decoration on a sensor’s performance can
be twofold, that is, the electronic sensitization effect and the chemical sensitization effect. The former is related to the modulated carrier concentration and mobility, whereas the latter is related to the improved binding affinity for the target gas [221]. Lee et al. demonstrated that pristine BP was insensitive to H2, while Pt NP-functionalized BP nanosheets exhibited high sensitivity to H2 [219]. It is a well-accepted fact that H2 adsorbed on Pt can form PtHx, which has a lower
Figure 21: (a) Top and (b) cross-section images of the film of stacked BP nanoflakes. (c) The current of a typical BP sensor vs. RH at 25°C. (d) Response of the stacked BP nanoflakes to different analytes. (e) Comparative pulse injection sensing response of BP films with different gold paste electrodes and InGa electrodes [218], copyright 2015 American Chemical Society.

Figure 22: (a) Schematic diagram of the water adsorption model of the BP-based QCM humidity sensors. (b) The frequency response of the BP-based QCM humidity sensors as a function of humidity. (c) The logarithmic fitting curves of log (Δf) versus humidity for all the sensors [31], copyright 2017 Elsevier Ltd.
work function than Pt [222]. This can result in the spontaneous electron transfer from PtHₓ to the p-type BP to reduce its conductance [223]. A similar beneficial effect from Pt NP functionalization was reported by Cho et al. [224], demonstrating ultrahigh selectivity in sensing H₂ (Figure 23(c)). They also found that the decoration of Au NPs on BP nanosheets could convert BP from the p-type semiconductor to the n-type semiconductor by donating extra electrons. This led to an increased resistance upon exposure to oxidizing gases, such as NO₂.

Besides modulating the carrier concentration [225, 226], doping BP with adatoms such as Fe, Ni, and Al is able to enhance its binding affinity for certain gases based on theoretical predictions [220, 226, 227]. For example, the binding energies for NO and CO on BP are -0.32 eV and 0.12 eV, respectively, and increase to -2.58 eV on Fe-doped BP [220] and to -1.16 eV on Ni-doped BP [227], respectively.

5. Summary and Outlooks

2D materials are promising building blocks in the future development of various sensing platforms. In this review, by looking into the recent experimental and theoretical investigations of the gas sensing behaviors of 2D atomic crystals such as MCs, BP, and MXenes, we have discussed their gas sensing mechanisms and the related influential factors.

Figure 23: Schematic illustration of (a) decoration of Pt NPs and (b) doping with Fe atoms to enhance sensing performance. (c) Summary of gas response of the pristine BP, Au/BP, and Pt/BP for various target chemical analytes [224], copyright 2017 American Chemical Society.
as well as adoptable approaches that can enhance their sensing performance (Table 4).

Direct gas adsorption-induced charge transfer has been found to be the dominating gas sensing mechanism in many 2D material-based electrical gas sensors such as chemiresistive and FET sensors. Alike conventional semiconducting metal oxide gas sensors, reactions between target gas molecules and preabsorbed oxygen species and water molecules have also been found to occur on the surfaces of MCs or BPs under ambient conditions or at slightly raised temperatures, which induce charge transfer and conductivity change. When the relative humidity becomes high, especially when water molecules are the target for sensing, continuous H+/H3O+ pathways on the 2D material surfaces may form which contribute further to the conductivity change via the proton conduction mechanism. MXenes show special gas sensing behaviors in contrast to most semiconducting MCs and BPs, because many of them are intrinsically metal-like in nature with narrow bandgaps. Therefore, in MXene-based gas sensors, the gas adsorption-induced charge scattering presents another important sensing mechanism in addition to the charge transfer mechanism; which mechanism is dominant depends on the composition, surface chemistry, and dopant type/concentration of the MXene, as well as the working temperature.

Common factors such as the layer number, surface functionalities, electron channel contact, gate bias, and working temperature have been found to influence the gas sensing behaviors of 2D materials. Again, MXenes are special in a way that their terminal groups, which can be controlled by the synthesis and treatment methods, can exert profound effects on their band structures and therefore sensing pathways.

Further enhancement of the gas sensing performance of the various 2D material-based devices, in terms of sensitivity, selectivity, and response/recovery time, can be achieved via the creation of 3D porous networks, adatom doping/ion intercalation, formation of composites/heterostructures, and application of light, stress field, or electrostatic field. For example, the creation of 3D porous networks can enlarge gas-solid interaction surfaces and improve gas adsorption/desorption kinetics; the formation of heterostructures can modulate charge transport barriers; and light activation can increase the charge carrier concentration and even modify the molecular orbital structure of the target gas.

Understanding the sensing mechanisms involving surface processes is of paramount importance in the further development of advanced sensing materials and device structures. This requires advanced surface characterization techniques, especially those capable of in situ monitoring. For example, synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy can help characterize the chemical states of the initial, intermediate, and final structure of a sensing material during the sensing process, which is favorable for speculating the sensing process and analysis of the sensing mechanism.

<table>
<thead>
<tr>
<th>Target gas</th>
<th>Materials</th>
<th>Detection limit</th>
<th>Response/sensitivity</th>
<th>Temperature</th>
<th>Type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO2</td>
<td>4 nm MoS2</td>
<td>1.2 ppm</td>
<td>6.1% @ 1.2 ppm</td>
<td>RT</td>
<td>FET</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>BP/MoS2</td>
<td>10 ppb</td>
<td>~10.5% @ 25 ppb</td>
<td>RT</td>
<td>FET</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>5 ppb</td>
<td>2.9% @ 5 ppb</td>
<td>/</td>
<td>FET</td>
<td>[199]</td>
</tr>
<tr>
<td></td>
<td>Monolayer MoS2</td>
<td>0.15 ppb</td>
<td>8.6% @ 1 ppb</td>
<td>RT</td>
<td>FET</td>
<td>[126]</td>
</tr>
<tr>
<td>NH3</td>
<td>WS2 nanoflakes</td>
<td>1 ppm</td>
<td>~900% @ 10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[67]</td>
</tr>
<tr>
<td></td>
<td>3D TiC/Tx</td>
<td>50 ppb</td>
<td>0.10–0.17% @ ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[186]</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>80 ppb</td>
<td>13% @ 10 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[205]</td>
</tr>
<tr>
<td>H2</td>
<td>Pt/BP</td>
<td>500 ppm</td>
<td>50% @ 4%</td>
<td>RT</td>
<td>FET</td>
<td>[219]</td>
</tr>
<tr>
<td></td>
<td>Pt/BP</td>
<td>10 ppm</td>
<td>500% @ 1%</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[224]</td>
</tr>
<tr>
<td></td>
<td>MoS2/graphene oxide nanocomposite</td>
<td>/</td>
<td>~200% @ 4.5% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[65]</td>
</tr>
<tr>
<td>Humidity</td>
<td>BP</td>
<td>11.3% RH</td>
<td>3145 Hz @ 97.3% RH</td>
<td>RT</td>
<td>QCM</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>TiC/Tx</td>
<td>/</td>
<td>60 times response change @ 11-95% RH</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[174]</td>
</tr>
<tr>
<td>Ethanol</td>
<td>MoSe2 nanosheets</td>
<td>10 ppm</td>
<td>~18% @ 20 ppm</td>
<td>90°C</td>
<td>Chemiresistor</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>3D TiC/Tx</td>
<td>50 ppb</td>
<td>0.10–0.17% @ ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[186]</td>
</tr>
<tr>
<td>Acetone</td>
<td>Sn0.3W0.7S2/SnS2</td>
<td>0.1 ppm</td>
<td>0.60% @ 0.4 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[245]</td>
</tr>
<tr>
<td></td>
<td>TiC/Tx</td>
<td>0.011 ppb</td>
<td>0.97% @ 100 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[152]</td>
</tr>
<tr>
<td>Methanol</td>
<td>3D TiC/Tx</td>
<td>50 ppb</td>
<td>0.10–0.17% @ ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[186]</td>
</tr>
<tr>
<td></td>
<td>TiC/Tx</td>
<td>/</td>
<td>0.143% @ 100 ppm</td>
<td>RT</td>
<td>Chemiresistor</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>MoS2</td>
<td>2.7 ppm</td>
<td>0.37 ppm @ ppm</td>
<td>RT</td>
<td>Photonic crystal</td>
<td>[107]</td>
</tr>
</tbody>
</table>

Research
As the map of 2D atomic crystals continues to expand over the years, emerging 2D materials such as borophene, arsenene, antimonene, and BiOSe [1, 228–231] are also promising candidates for gas sensing. For example, borophene, a single layer of boron atoms, and related derivatives have been prepared recently [232–236]. A number of theoretical investigations have shown their potential applications in thechemiresistive type of gas sensors for VOCs such as ethanol [237], formaldehyde [238], acetalddehyde [239], and propanal [239], as well as uncommon toxic gases such as HCN [240], COCl₂, and CO [241]. These novel 2D material-based gas sensing systems require further experimental exploitations.

It is however the common obstacle facing most gas sensing nanomaterials that they show limited selectivity. Although preferred gas adsorption, surface reaction, intercalation, and carrier doping have rendered these 2D materials with a certain level of selectivity, there is still big room for improvement when compared with spectroscopy-based sensing systems. Besides, for room temperature sensors, the interference from the variation of ambient temperature and relative humidity is unneglectable and can largely affect the sensor selectivity. The fabrication of sensor arrays combined with data processing has been an effective strategy to improve sensing selectivity and has been used in many commercial electrical sensors. Very recently, single-atom catalysts (SACs) have been prepared on metal oxide via surface coordination to improve the selectivity and sensitivity of room temperature gas sensors, which can also be adopted for 2D material-based gas sensors. For example, atomic Pd can provide a higher adsorption efficiency for oxygen species which in turn enhances the sensitivity and selectivity toward CO [242]. In addition, as compared with a single-output sensor, which is the case for most reported 2D material-based electrical sensors, a gas sensor with multivariant signal output is capable of achieving better selectivity and reliability [243]. For example, a suitable 2D crystal can be integrated into a device that can output electrical resistance change as well as resonance frequency change as in a QCM setup. This actually demands strongly on the future exploration of smart gas sensing materials.

Durability is a key issue facing practical gas sensors. This becomes particularly challenging when surface reactions are involved in the sensing process in the presence of humid air at elevated working temperatures. Surface incorporation with metal NPs to induce catalytic reaction instead of direct reaction between the gas molecules and the 2D material might help improve the sensor stability. In addition, the use of a humidity filter or functionalization of the 2D material with molecules with hydrophobic terminal groups can reduce the effect of humidity; however, this may also reduce sensitivity and increase response time. Besides, the incorporation of 2D materials in the optic fiber and photonic crystal gas sensors may offer enhanced durability as compared to chemiresistive gas sensors.

One of the advantages of 2D materials lies in their intrinsic flexibility which enables their integration into wearable and portable gas sensors for applications such as real-time environmental monitoring [244] and analysis of breath content for health monitoring [27]. Although much progress has been made in gas sensing with 2D materials, wearable and portable gas sensors have shown limited development. This is largely due to the reduced sensitivity and durability under bending or stretched conditions because both the mechanical strain and gas adsorption can change the sensing response. Such crosstalk problem might be tackled by proper structure design and use of sensor arrays with data processing.

Currently, most commercially available gas sensors are based on metal oxides which function at elevated temperatures. Gas sensors based on 2D materials are able to deliver enhanced sensitivity at room temperature at reduced power consumption. However, their sensing responses at low gas concentrations are still not high enough such that they are prone to environmental perturbations. In other words, factors such as humidity, temperature, and strain may cause unneglectable changes to the sensing response and affect their reliability and durability. Therefore, there is an urgent need to explore novel 2D gas sensing materials with high sensitivity, selectivity, and stability and develop new strategies to further improve the sensitivity of room temperature 2D material gas sensors.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Authors’ Contributions

Jiacheng Cao, Qian Chen, and Xiaoshan Wang contributed equally to this work.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 51832001, 61935017, and 51811530018), the Fundamental Research Funds for the Central Universities of China, the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (grant no. 2020GXLH-Z-026 and 2020GXLH-Z-027), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (grant no. CX2020293).

References

N. Ma, K. Suematsu, M. Yuasa, T. Kida, and K. Shimanoe,
G. Feo, J. Sharma, D. Kortukov, W. Williams, and X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond,

[234] L. Z. Liu, S. J. Xiong, and X. L. Wu, "Monolayer borophene electrode for effective elimination of both the Schottky barrier..."
and strong electric field effect,” *Applied Physics Letters*, vol. 109, no. 6, article 061601, 2016.

[239] Z. Moshenpour, E. Shakerzadeh, and M. Zare, “Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B36 nanosheet,” *Adsorption*, vol. 23, no. 7–8, pp. 1041–1053, 2017.

