Research Article
A Photoelectric-Stimulated MoS$_2$ Transistor for Neuromorphic Engineering

Shuiyuan Wang,1 Xiang Hou,1 Lan Liu,1 Jingyu Li,1 Yuwei Shan,2 Shiwei Wu,2 David Wei Zhang,1 and Peng Zhou1

1ASIC & System State Key Lab., School of Microelectronics, Fudan University, Shanghai 200433, China
2Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China

Correspondence should be addressed to Peng Zhou; pengzhou@fudan.edu.cn

Received 23 June 2019; Accepted 14 October 2019; Published 11 November 2019

Copyright © 2019 Shuiyuan Wang et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).

The von Neumann bottleneck has spawned the rapid expansion of neuromorphic engineering and brain-like networks. Synapses serve as bridges for information transmission and connection in the biological nervous system. The direct implementation of neural networks may depend on novel materials and devices that mimic natural neuronal and synaptic behavior. By exploiting the interfacial effects between MoS$_2$ and AlO$_x$, we demonstrate that an h-BN-encapsulated MoS$_2$ artificial synapse transistor can mimic the basic synaptic behaviors, including EPSC, PPF, LTP, and LTD. Efficient optoelectronic spikes enable simulation of synaptic gain, frequency, and weight plasticity. The Pavlov classical conditioning experiment was successfully simulated by electrical tuning, showing associated learning behavior. In addition, h-BN encapsulation effectively improves the environmental time stability of our devices. Our h-BN-encapsulated MoS$_2$ artificial synapse provides a new paradigm for hardware implementation of neuromorphic engineering.

1. Introduction

The challenges of traditional computing architectures stem from storage capacity limitations and the high cost of specific data transfer speeds between memory and processors, the so-called von Neumann bottleneck [1–5]. With the advent of the artificial intelligence and big data era, this dilemma is becoming more profound. Brain-inspired neuromorphic engineering is different to the von Neumann architecture, combining memory and computation, with efficient energy utilization, and flexible adaptive and massively parallel computing capabilities [6]. It may achieve unprecedented technological breakthroughs, fundamentally overcoming the von Neumann bottleneck [7, 8]. Artificial synapses, just as those in the biological nervous system [9], play an important role in connecting various neuron blocks as the basic units of neuromorphic engineering [10]. Constructing new, stable, reliable, and efficient artificial high-performance synaptic devices is essential for neuromorphic engineering and neural network computing [11]. Many artificial synaptic devices have been reported, including oxide electric double layer [12–14], ionic liquid/gel transistors [15–20], memristors [21–29], phase-changed memory [30–34], and ferroelectric transistors [35–37]. Also, the unique internal and interfacial structures of two-dimensional (2D) materials, as well as their electrical and optical properties [38–40], make them promising candidates for complex neuromorphic engineering [41–45]. In addition, optical modulation can establish a connection between the external environment and the brain through the visual system [46–48], and combining effective optoelectronic modulation is critical for neuromorphic engineering applications, such as artificial eyes and super vision [49–51].

Here, we demonstrate an efficient photoelectrical tunable h-BN-encapsulated MoS$_2$ synaptic transistor with basic synaptic functions. Furthermore, under electrical modulation, we successfully simulate the impressive Pavlov classical conditioning experiment through V_{bg} tuning, which realizes the acquisition, extinction, and recovery function of associated
learning. Due to the h-BN encapsulation, our devices exhibit superior environmental time stability. Our h-BN-encapsulated MoS_2 artificial synaptic transistor provides a novel paradigm for neuromorphic engineering based on 2D materials.

2. Results

First, we fabricated an h-BN-encapsulated MoS_2 synaptic transistor on an AlO_x/Si substrate, which simulates synaptic behavior by photoelectric stimulation, as shown in Figures 1(a) and 1(b). 2D layered h-BN and MoS_2 were prepared by mechanical exfoliating. The surface morphology of our device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), as shown in Figure 1(c) and Figure S2a, respectively, showing a typical channel width of 10 μm, a length of 15 μm, and the thickness of the MoS_2; h-BN was approximately 1.7 and 7 nm. The Raman spectrum shows the characteristic peaks of both materials: Raman shift of the MoS_2 characteristic peak is 385,405 cm^-1 (Figure 1(e)) and the h-BN is 1366 cm^-1 (Figure S2b), which is consistent with previous reports. Figure 1(d) shows the Raman mapping of h-BN-encapsulated MoS_2 synaptic transistor at 405 cm^-1, the channel MoS_2 exhibits intense intensity, and the h-BN/MoS_2 overlap region is more strongly correlated with h-BN encapsulation, where the black and gray dashed areas represent the h-BN/MoS_2 overlap region and channel MoS_2, respectively. A significant peak was observed in the PL spectrum of MoS_2 at 1.88 eV photon energy (Figure 1(f)), which is consistent with the band gap of multilayer MoS_2. Then, we studied the behavioral characteristics of our h-BN-encapsulated MoS_2 synaptic transistor under electrical modulation. Figure 2(a) shows the \(I_{ds}-V_{bg} \) curves of the h-BN-encapsulated MoS_2 synaptic transistor with \(V_{ds} \) of 0.1, 0.5, and 1 V. The back gate voltage was swept from -6 to 8 V, then swept back, and a noticeable clockwise hysteresis loop was observed, which may be due to charge trapping between the MoS_2 and AlO_x interfaces. The statistical distribution of the maximum value of the memory window indicates that the memory window of most devices is 2-3 V (see the statistics of 80 devices in Figure S11a in Supplementary Materials). The transfer curves of the h-BN/MoS_2/h-BN control devices show no hysteresis window, since the bottom h-BN isolates the interface effect of MoS_2 and AlO_x (see Figures S10a-c, the schematic diagram of the control devices, micrograph of the control device, and transfer curves of the control devices in Supplementary Materials). Owing to top encapsulated h-BN, the stability of our devices has been significantly improved (see Figure S3, output curves and stability of h-BN-encapsulated MoS_2 synaptic transistor in Supplementary Materials) [52-55]. We explored the optimal base and pulse voltages for device operation in electrical mode for excitatory and inhibitory synapses, with reference to gain \(A_e/A_i \), the amplitude of the postsynaptic current caused by spike is denoted by \(A \) of five consecutive pulses and long-term synaptic weight changes \(\Delta W/W \), calculated by \((1 - 10)/10 \times 100\% \), where 10 and 1 represent the current states before and after the application of the pulse signal, respectively. Before applying the pulse signal, we select the average value at the 5th second as \(I_0 \). After the pulse signal is applied, the average value of the 40th second is selected as \(I \), and the pulse signals are applied at the same time. For excitatory synapses, the gain was maximized when \(V_{bg} \) base was -3 V and pulse was -4 V (pulse duration of 10 ms, interval of 200 ms), as shown in Figure 2(b) (no synaptic excitability of the h-BN/MoS_2/h-BN control devices under the same \(V_{bg} \) base and pulse conditions, see Figure S10d in Supplementary Materials). For inhibitory synapses, excitatory spike stimulation was first performed, and then fixed base, incremental \(V_{bg} \) pulse was applied, and gain and weight changes were reduced, that is, the depression effect gradually strengthened, and 8 V was selected as the inhibitory spike (duration of 10 ms, interval of 200 ms), as shown in Figure 2(c) (no synaptic inhibition of the h-BN/MoS_2/h-BN control devices under the same \(V_{bg} \) base and pulse conditions, see Figure S10e in Supplementary Materials). Figure 2(d) shows the frequency plasticity of inhibitory synapses with fixed duration of 10 ms and number of 10, and the gain gradually decreases as the frequency increases. Figure 2(e) depicts postsynaptic current characteristics under 30 cumulative excitatory and inhibitory spiking stimulations (duration of 10 ms, interval of 200 ms), which exhibits long-term potentiation and inhibition under electrical mode (the h-BN/MoS_2/h-BN control devices have no LTP and LTD characteristics under the same \(V_{bg} \) base and pulse, see Figure S10f in Supplementary Materials). Furthermore, Figure 2(f) shows extracted PSC from excitatory and inhibitory spikes, where electrical potentiation and inhibition are clearly observed. The number-dependent facilitation and depression under electrical stimulation are shown in Figure S4 in Supplementary Materials. The electrical potentiation and inhibition effects under electrical stimulation are attributed to the charges trapping and detrapping at the MoS_2-AlO_x interfaces. The statistical distribution of the maximum value of the excitatory index indicates that the excitatory index of most devices can reach 500-700% (see the statistics of 80 devices in Figure S11b in Supplementary Materials). Under forward bias (\(V_{bg} \) pulse of 8 V), the oxygen vacancy trapping states in AlO_x move toward the channel, trapping the electrons in MoS_2, causing channel current to decrease, corresponding to synaptic inhibition. While under reverse bias (\(V_{bg} \) pulse of -4 V), oxygen ions in AlO_x move toward MoS_2, and the oxygen vacancy trapping states release trapped electrons, resulting in increased channel current, which corresponds to synaptic potentiation (see Figure S5, physical mechanism under electrical stimulation in Supplementary Materials).

The realization of the association learning is of great significance for neuromorphic engineering. Pavlov’s dog classical conditioning experiment is a typical associative learning experiment in physiology [56-58]. In Pavlov’s dog experiment, food is called unconditional stimulation (US), while the bell and salivation are called neutral stimulation (NS) and unconditional response (UR), respectively. Food can cause salivation, while bell ringing alone does not cause salivation. Combining the bell with food, that is, after the bell
rings, the dog is fed with food, also causes salivation [57, 59]. Pavlov’s dog classical conditioning experiment can be simulated on the proposed h-BN-encapsulated MoS₂ synaptic transistor by efficient electrical modulation, as shown in Figure 3. \(V_{bg} \) (base, pulse) of (-5, -4 V) applied to the presynaptic gate is considered to be “bell” (NS), and \(V_{bg} \) (base, pulse) of (-3, -4 V) is considered “food” (US). The postsynaptic source drain channel current acts as synaptic weight, and the synaptic weight of 20 nA is defined as the threshold for the “salivation” response (UR). After a single training, only the “bell” ringing does not cause salivation, but after repeated training, the “bell” ringing can also cause “salivation,” which shows the same effect as feeding “food.” At this point, an association is established between “bell” and “food,” and
Figure 2: Characteristics of h-BN-encapsulated MoS₂ synaptic transistor under electrical stimulation. (a) Transfer curve under different V_{ds}. (b) Selecting the optimal base and pulse for the excitatory synapse by gain, when base of -3 V and pulse of -4 V, the maximum gain is obtained. (c) Selecting the optimal pulse of inhibitory synapse by gain and long-term synaptic weight change, the maximum inhibition effect and weight change are obtained when pulse is 8 V. (d) Frequency plasticity of inhibitory synapses, and the gain gradually decreases as the frequency increases. (e) Accumulation of postsynaptic current characteristics under 30 excitatory and inhibitory pulse stimulations. (f) Postsynaptic current characteristics as a function of progressive excitatory and inhibitory pulse stimulation numbers, showing long-term potentiation and inhibition effects.

Figure 3: Pavlov’s dog classical conditioning experiment implemented by h-BN-encapsulated MoS₂ synaptic transistor. Pavlov’s dog classical conditioning experiments can be simulated on the proposed h-BN-encapsulated MoS₂ synaptic transistor by efficient electrical modulation. V_{bg} (base, pulse) of (-5, -4 V) applied to the presynaptic gate is considered to be “bell” (NS), and V_{bg} (base, pulse) of (-3, -4 V) is considered “food” (US). The postsynaptic source drain channel current acts as synaptic weight, and the synaptic weight of 20 nA is defined as the threshold for the “salivation” response.
the corresponding NS “bell” is converted to conditional stimulation (CS), causing a conditional response (CR) that triggers “salivation” similar to US, which is called acquisition. After a long time or reset operation, “salivation” no longer occurs when there is only CS, which means that the association between CS and US is extinct/forgotten. However, after training again, “salivation” occurs again when the “bell” rings only, that is, the association is recovered. In addition, we found that due to the existence of acquisition, the current of single training after recovery is significantly higher than the previous single training, which has exceeded the threshold and “salivation” occurs.

In addition to electrical modulation, optical spikes also enable efficient regulation of our h-BN-encapsulated MoS2 synaptic transistor, which uses laser pulses as the photogate to adjust the channel conductance (synaptic weight), as shown in Figure 4(a). Figure 4(b) shows the single-laser pulse characteristics (532 nm, duration of 100 ms, power of 50 mW/cm²) of the synaptic transistor at \(V_{bg} \) of 0, -5, and -10 V, which significantly affect the reference current (the single-laser pulse characteristics of our synaptic transistor at 473,655 nm and the single-laser pulse current versus time at three wavelengths with \(V_{ds} \) of 1 V are detailed in Figure S6 in Supplementary Materials). Besides, variation of postsynaptic current amplitude under different \(V_{bg} \) (0, -5, -10 V) and single-laser pulses with different wavelengths (473, 532, 655 nm) is shown in Figure 4(c). We found that the PSC amplitude increases significantly with \(V_{bg} \), where different wavelengths have little effect on the PSC amplitude (both of \(\mu A \)), which may be due to the excitation of the h-BN-encapsulated MoS2 synaptic transistor at each wavelength, resulting in photocarrier accumulation in the channel. Specifically, photogenerated carriers (electron-hole pairs) are generated and separated in the top h-BN layer, while photogenerated electrons are transferred to MoS2, resulting in an increase in channel current. With the cumulative number of laser pulses, the electrons in MoS2 increase continuously, and the channel current appears to be nonvolatile, corresponding to the LTP behavior of neural synapses (see the physical mechanism under optical stimulation in Figure S9 in Supplementary Materials). Moreover, paired pulse facilitation (PPF) is a dynamic increase in neurotransmitter release that is thought to be critical in biosynaptic function simulations.
where presynaptic-induced EPSC amplitude decreases with increasing two consecutive pulse intervals (Δt). Figure 4(d) describes the postsynaptic current response when a pair of consecutive laser pulses (532 nm, duration of 100 ms, 50 mW/cm2 of power, V_{bg} and V_{ds} are 0 and 1 V) is applied. For small Δt, the postsynaptic current is further enhanced, resulting in $A_2 > A_1$, corresponding to typical synaptic PPF characteristics. Figure 4(e) exhibits the PPF index A_2/A_1 as a function of the interval time (Δt), where the red dashed line represents the fitting curve of the double exponential decay function (Equation (1)) [61]. C_1 and C_2 are the initial magnitudes of the fast and slow phases, and t_1 and t_2 are the characteristic relaxation times of the phases. For our h-BN-encapsulated MoS$_2$ synaptic transistor, t_1 and t_2 are about 3.0 and 247.4 ms, respectively, which is faster than in most previous work and is consistent with the relaxation time in biological synapses [16, 20, 62–65]. Moreover, we demonstrate long-term synaptic potentiation and inhibition effects under photoelectric modulation with V_{bg} and V_{ds} of 0 and 1 V, i.e., implementing optical potentiation (532 nm, laser duration 100 ms, power 50 mW/cm2) and electrical inhibition (V_{bg} pulse 3 V, duration 50 ms) behaviors in sequence, as shown in Figure 4(f). The optimal V_{bg} pulses for inhibition under optical stimulation are explored in Figure S7 in Supplementary Materials, and 50 laser-stimulated LTP, followed by 50 electrical stimulation LTD characteristics, are shown in Figure S8 of Supplementary Materials, respectively.

\[
\text{PPF} \left(\frac{A_2}{A_1} \right) = C_1 \exp \left(-\frac{\Delta t}{t_1} \right) + C_2 \exp \left(-\frac{\Delta t}{t_2} \right) + C_0.
\]

(1)

Subsequently, we demonstrate the optical neural plasticity of the h-BN-encapsulated MoS$_2$ synaptic transistor. Figure 5(a) exhibits a typical long-term potentiation of h-BN-encapsulated MoS$_2$ synaptic transistor under optical stimulation. (b) Magnification of the dotted circle area in (a). (c) Gain variation of different wavelengths (473, 532, 655 nm) and pulse numbers under laser stimulation. (d) Long-term synaptic weight changes at different wavelengths (473, 532, 655 nm) and pulse numbers under laser stimulation. (e) Gain variation of different wavelengths and laser powers under optical modulation. (f) Gain as a function of wavelength and frequency in optical modulation mode.
are 100 ms and 1 s, power of 50 mW/cm², laser number of 50, \(V_{bg} \) and \(V_{ds} \) are 0 and 1 V), and Figure 5(b) is an enlargement of the dotted circle region in Figure 5(a). Gain \((A_{2g}/A_{1g})\) variation of different wavelengths (473, 532, 655 nm) and pulse numbers under laser stimulation (532 nm, laser duration and interval are 100 and 400 ms, power of 50 mW/cm², \(V_{bg} \) and \(V_{ds} \) are 0 and 1 V) are demonstrated in Figure 5(c), which accumulates the laser pulse numbers, and the gains under three wavelength stimuli gradually increase and tend to saturate. Besides, we demonstrate that with the increase of the laser spiking number, the long-term synaptic weight changes at different wavelengths also gradually increase, indicating that the synaptic connections are strengthened, as shown in Figure 5(d). And we found that the \(\Delta W/W \) induced by the 532 nm laser spike is the largest, that is, the strongest synaptic connection strength, and the weakest was at 655 nm, which may be attributed to the larger the wavelength, the smaller the energy under the same conditions, and the fewer photogenerated carriers are generated, resulting in the smaller the energy under the same conditions, and the synaptic gain decreases, which may be attributed to the larger the wavelength, the weaker the connection strength, and the weakest was at 655 nm, by concentrating more photogenerated carriers. Figure 5(e) shows the gain \((A_{2g}/A_{1g})\) variation of different wavelengths and laser powers under optical modulation (laser duration and interval are 100 and 400 ms, \(V_{bg} \) and \(V_{ds} \) are 0 and 1 V). Abnormally, as the laser power increases, the synaptic gain decreases, which may be attributed to the incremental power intensity causing slight damage to the channel material and degradation of performance. Finally, we also demonstrate the synaptic gain as a function of wavelength and laser frequency (1-50 Hz, duration of 100 ms, power of 50 mW/cm², \(V_{bg} \) and \(V_{ds} \) are 0 and 1 V), which increases with frequency and has a maximum at 50 Hz, as shown in Figure 5(f). PSC, PPF, gain, and \(\Delta W/W \) tuning all demonstrate the flexibility and diversity of synaptic plasticity in our h-BN-encapsulated MoS₂ synaptic transistor. Besides, comparing the performance of h-BN-encapsulated MoS₂ artificial synapse with other 2D-based artificial synaptic devices, including organic and inorganic materials (such as PEDOT:PSS, CsbPBr3, Pentacene, EMIM-TFSI, PVA, MoS₂, WSe₂, graphene, h-BN, and BP) demonstrates the superiority of our devices (see Table S1 in Supplementary Materials). The acceptable switching power consumption is estimated to be 80 fJ per spike, which is two orders of magnitude lower than the traditional CMOS [66] and even down to femtojoule when the \(V_{th} \) is 0.1 V, close to the human brain [16]. The h-BN-encapsulated MoS₂ artificial synaptic transistor provides a novel paradigm for neuromorphic engineering based on 2D materials.

3. Discussion

In conclusion, our breakthrough, efficient, photoelectrical tunable, diverse h-BN-encapsulated MoS₂ synaptic transistor demonstrates basic synaptic functions including EPSC, PPF, LTP, LTD, synaptic gain, frequency, and weight plasticity. In addition, under electrical modulation, we successfully simulated the Pavlov classical conditioning experiment and realized the associated learning function. It is worth mentioning that due to the h-BN encapsulation, our devices have superior environmental stability. Our synaptic transistor provides an unparalleled perspective on novel 2D material-based neuromorphic engineering and brain-like computing.

4. Materials and Methods

4.1. Preparation of the h-BN-Encapsulated MoS₂ Synaptic Transistor. We fabricated the h-BN-encapsulated MoS₂ synaptic transistor on an AlOₓ/Si substrate, which simulates synaptic behavior by photoelectric stimulation, as shown in Figures 1(a) and 1(b). Firstly, two-dimensional h-BN and MoS₂ were prepared by mechanical exfoliation, and their thicknesses were determined by an atomic force microscope (AFM) to be about 7 and 1.7 nm, as shown in Figure S2a. The h-BN was placed on top of the MoS₂ by wet transfer using polyvinyl alcohol (PVA) as a sacrificial layer to construct an h-BN/MoS₂ heterojunction and depositing the 30 nm source-drain electrodes by electron beam evaporation (EBE) to form the synaptic transistor. The detailed manufacturing process of the h-BN-encapsulated MoS₂ synaptic transistor is shown in Figure S1.

4.2. Device Characterization and Measurement. The surface morphology of our device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), as shown in Figure 1(c) and Figure S2a, respectively, showing a typical channel width of 10 µm, a length of 15 µm, and the thickness of the MoS₂; h-BN was approximately 1.7 and 7 nm. Besides, the 2D layered material was characterized by Raman and PL spectroscopy, as shown in Figures 1(e) and 1(f) and Figure S2b. MoS₂ shows two strong peaks near 385 and 405 cm⁻¹, corresponding to the in-plane \((E_{2g})\) and vertical \((A_{1g})\) vibration models. The Raman spectrum of h-BN reveals a peak near 1366 cm⁻¹ and also corresponds to the in-plane \((E_{2g})\) vibration model. The Raman mapping of h-BN-encapsulated MoS₂ synaptic transistor at 405 cm⁻¹ is shown in Figure 1(d), the channel MoS₂ exhibits intense intensity, and the h-BN/MoS₂ overlap region is more strongly correlated with h-BN encapsulation, where the black and gray dashed areas represent the h-BN/MoS₂ overlap region and channel MoS₂, respectively. A distinct peak was observed in the PL spectrum of MoS₂ at 1.88 eV photon energy, which is consistent with the band gap of multilayer MoS₂. All electrical measurements of our device were performed on the cascade probe station and Keithley 4200A semiconductor analyzer, and optical measurements were performed on the TTL/analog-modulated multiwavelength (655, 532, 473 nm) laser system.

Conflicts of Interest

The authors declare no conflict of interest.
Authors’ Contributions

S. Wang designed and conducted the experiments; P. Zhou and D.W. Zhang conceived the idea; Y. Shan and S. Wu performed optical characterization of materials; X. Hou and L. Liu provided assistance with mechanism analysis and discussion.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61622401, 61851402, and 61734003), the National Key Research and Development Program (2017YFB0405600), the Shanghai Education Development Foundation, and the Shanghai Municipal Education Commission Shuguang Program (18SG01). P.Z. also acknowledges support from the Shanghai Municipal Science and Technology Commission (grant no. 18JC1410300).

Supplementary Materials

Figure S1: fabrication process scheme of h-BN-encapsulated MoS2 synaptic transistors. It is worth mentioning that it is necessary to grow 1 nm Al seed layer and naturally oxidize for 24 hours before depositing 30 nm Al2O3 as a back gate dielectric by ALD [1–3]. Figure S2: AFM image of synaptic transistor and Raman shift characterization of h-BN. (a) The AFM image of the MoS2 synapse transistor in h-BN package, in which the MoS2 and h-BN heights are 1.7 and 7 nm, respectively. (b) Raman shift of the h-BN characteristic peak is 1366 cm⁻¹. Figure S3: output characteristics and stability of h-BN-encapsulated MoS2 synaptic transistors. (a) I_ds, V_ds curves and V_bg from -5 to 5 V in steps of 2.5 V. (b) h-BN-encapsulated MoS2 synaptic transistors with good time and operating stability [4–7]. Figure S4: number-dependent facilitation and depression under electrical stimulation. (a) Excitatory PSC and gain under different electrical pulse numbers. (b) PSC and inhibitory ratio under different electrical pulse numbers. Figure S5: physical mechanism under electrical stimulation. (a) Under forward bias, the oxygen vacancy trapping states in AlOx move toward the channel, trapping the electrons in MoS2, causing channel current to decrease. (b) Under reverse bias, oxygen ions in AlOx move toward MoS2, and the oxygen vacancy trapping states release trapped electrons, resulting in increased channel current [8–10]. Figure S6: single pulse characteristics of h-BN-encapsulated MoS2 synaptic transistors under different V_bg and wavelength lasers. (a) Characteristics of different V_bg (0, -5, -10 V) under a single 473 nm laser pulse. (b) Characteristics of different V_bg under a single 655 nm laser pulse. (c) Characteristics of single-laser pulses of different wavelengths under V_bg 0 V. Figure S7: optimal V_bg pulse for inhibition under optical stimulation. (a) 2 V of V_bg pulse. (b) 3 V of V_bg pulse. (c) 4 V of V_bg pulse. (d) 6 V of V_bg pulse. Figure S8: LTD and LTP behaviors under optical/electrical stimulation. (a) LTD behavior under 50 laser pulses. (b) Subsequent LTD behavior for 50 optical pulses. Figure S9: physical mechanism under optical stimulation. (a) Photogenerated carriers (electron-hole pairs) are generated and separated in the top h-BN under laser duration, in which photogenerated electrons are transferred to MoS2, resulting in an increase in channel current. (b) With the cumulative number of laser pulses, the electrons in MoS2 increase continuously, and the channel current appears to be nonvolatile, that is, LTP behavior [11]. Figure S10: characteristics of the control devices: h-BN/MoS2/h-BN structure. (a) Schematic diagram of the control devices. (b) Micrograph of a typical control device. (c) Transfer curves of the control devices. (d) No synaptic excitability of the control devices under the same V_bg base and pulse conditions. (e) No synaptic inhibition of the control devices under the same V_bg base and pulse conditions. (f) Predictably, the control devices have no LTD and LTD characteristics under the same V_bg base and pulse. Figure S11: memory window and excitatory index statistics for 80 h-BN-encapsulated MoS2 synaptic transistor. (a) The statistical distribution of the maximum value of the memory window (mean = 2.36, SD = 0.78), showing that the memory window is 2–3 V in most devices. (b) The excitability index of most devices can reach 500–700% (mean = 540.69, SD = 142.06). Table S1: comparison of 2D-based synaptic device performance, including device geometry, operating modes, electrical/optical tuning, excitatory index, long-term weight change, and power consumption. (Supplementary Materials)

References

